Quadratic Function Domain Analysis: Positive and Negative Regions in y = 4x² - x - 3

Question

Find the positive and negative domains of the following function:

y=4x2x3 y=4x^2-x-3

Step-by-Step Solution

To solve for the positive and negative domains of the function y=4x2x3 y = 4x^2 - x - 3 , follow these steps:

  • Step 1: Identify and apply the quadratic formula to find the roots.
  • Step 2: Calculate the discriminant to ensure real roots.
  • Step 3: Analyze the sign changes in the resulting intervals.

Step 1: The quadratic formula is x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} . Here, a=4 a = 4 , b=1 b = -1 , and c=3 c = -3 .

Step 2: Calculate the discriminant: b24ac=(1)24×4×(3)=1+48=49 b^2 - 4ac = (-1)^2 - 4 \times 4 \times (-3) = 1 + 48 = 49 . Since the discriminant is positive, two distinct real roots exist.

Step 3: Calculate the roots using the formula:

x=(1)±492×4=1±78 x = \frac{-(-1) \pm \sqrt{49}}{2 \times 4} = \frac{1 \pm 7}{8}

Thus, the roots x1=1+78=1 x_1 = \frac{1 + 7}{8} = 1 and x2=178=34 x_2 = \frac{1 - 7}{8} = -\frac{3}{4} .

Now we examine the sign of y=4x2x3 y = 4x^2 - x - 3 across the intervals determined by these roots: (,34) (-\infty, -\frac{3}{4}) , (34,1) (-\frac{3}{4}, 1) , and (1,) (1, \infty) .

  • For x<34 x < -\frac{3}{4} : Choose x=1 x = -1 . Substitute into the function: y=4(1)2(1)3=4+13=2 y = 4(-1)^2 - (-1) - 3 = 4 + 1 - 3 = 2 . Positive.
  • For 34<x<1 -\frac{3}{4} < x < 1 : Choose x=0 x = 0 . Substitute: y=4(0)2(0)3=3 y = 4(0)^2 - (0) - 3 = -3 . Negative.
  • For x>1 x > 1 : Choose x=2 x = 2 . Substitute: y=4(2)2(2)3=1623=11 y = 4(2)^2 - (2) - 3 = 16 - 2 - 3 = 11 . Positive.

Therefore, the positive domains are x<34 x < -\frac{3}{4} and x>1 x > 1 , and the negative domain is 34<x<1-\frac{3}{4} < x < 1.

The positive and negative domains are: x<0:34<x<1 x < 0 : -\frac{3}{4} < x < 1 and x>1 x > 1 or x>0:x<34 x > 0 : x < -\frac{3}{4} .

Answer

x < 0 : -\frac{3}{4} < x < 1

x > 1 or x > 0 : x < -\frac{3}{4}