Find the positive and negative domains of the following function:
Find the positive and negative domains of the following function:
To find when the function is positive or negative, we will determine its roots and analyze its sign changes across different intervals of .
**Step 1: Calculate the Roots**
The quadratic formula is . Here, , , and .
Calculate the discriminant:
.
Since and , the discriminant is negative, .
The discriminant is negative, indicating no real roots; the parabola does not intersect the x-axis.
**Step 2: Determine the Orientation and Sign**
The coefficient is negative, meaning the quadratic opens downwards.
**Step 3: Analyze the Sign of the Quadratic**
Since the quadratic opens downwards and doesn't intersect the x-axis, it remains negative for all .
Therefore, the negative domain of the function is and the function has no positive domain.
Consequently:
for all
none
Hence, the correct answer is: Choice 4.
x < 0 : for all
x > 0 : none