Determine the Positive and Negative Domains of y = 2x² + 7x - 9

Question

Find the positive and negative domains of the following function:

y=2x2+7x9 y=2x^2+7x-9

Step-by-Step Solution

To solve this problem, we need to find when the quadratic function changes from positive to negative and vice versa.

  • Step 1: Find the roots using the quadratic formula. For y=2x2+7x9 y = 2x^2 + 7x - 9 , identify a=2 a = 2 , b=7 b = 7 , and c=9 c = -9 .
  • Step 2: Apply the quadratic formula:
    x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
  • Step 3: Calculate:
    x=7±7242(9)22 x = \frac{-7 \pm \sqrt{7^2 - 4 \cdot 2 \cdot (-9)}}{2 \cdot 2}
    x=7±49+724 x = \frac{-7 \pm \sqrt{49 + 72}}{4}
    x=7±1214 x = \frac{-7 \pm \sqrt{121}}{4}
    x=7±114 x = \frac{-7 \pm 11}{4}
  • Step 4: Solve for the roots:
    x=7+114=1 x = \frac{-7 + 11}{4} = 1
    x=7114=184=4.5 x = \frac{-7 - 11}{4} = -\frac{18}{4} = -4.5
  • Step 5: The roots are x=1 x = 1 and x=4.5 x = -4.5 . These roots divide the real number line into intervals: (,4.5) (-\infty, -4.5) , (4.5,1) (-4.5, 1) , and (1,) (1, \infty) .
  • Step 6: Test each interval:
  • Interval (,4.5) (-\infty, -4.5) : Choose a test point like x=5 x = -5 .
    Calculate y y using x=5 x = -5 :
    y=2(5)2+7(5)9=50359=6(>0) y = 2(-5)^2 + 7(-5) - 9 = 50 - 35 - 9 = 6 \, (> 0) . The function is positive in this interval.
  • Interval (4.5,1) (-4.5, 1) : Choose a test point like x=0 x = 0 .
    Calculate y y using x=0 x = 0 :
    y=2(0)2+7(0)9=9(<0) y = 2(0)^2 + 7(0) - 9 = -9 \, (< 0) . The function is negative in this interval.
  • Interval (1,) (1, \infty) : Choose a test point like x=2 x = 2 .
    Calculate y y using x=2 x = 2 :
    y=2(2)2+7(2)9=8+149=13(>0) y = 2(2)^2 + 7(2) - 9 = 8 + 14 - 9 = 13 \, (> 0) . The function is positive in this interval.

The positive domain of y y is (,4.5)(1,) (-\infty, -4.5) \cup (1, \infty) .
The negative domain of y y is (4.5,1) (-4.5, 1) .

Thus, the domains are as follows:
x<0:412<x<1 x < 0 : -4\frac{1}{2} < x < 1
x>1 x > 1 or x>0:x<412 x > 0 : x < -4\frac{1}{2}

Answer

x < 0 : -4\frac{1}{2} < x < 1

x > 1 or x > 0 : x < -4\frac{1}{2}