Find the positive and negative domains of the following function:
y=2x2+7x−9
To solve this problem, we need to find when the quadratic function changes from positive to negative and vice versa.
- Step 1: Find the roots using the quadratic formula. For y=2x2+7x−9, identify a=2, b=7, and c=−9.
- Step 2: Apply the quadratic formula:
x=2a−b±b2−4ac
- Step 3: Calculate:
x=2⋅2−7±72−4⋅2⋅(−9)
x=4−7±49+72
x=4−7±121
x=4−7±11
- Step 4: Solve for the roots:
x=4−7+11=1
x=4−7−11=−418=−4.5
- Step 5: The roots are x=1 and x=−4.5. These roots divide the real number line into intervals: (−∞,−4.5), (−4.5,1), and (1,∞).
- Step 6: Test each interval:
- Interval (−∞,−4.5): Choose a test point like x=−5.
Calculate y using x=−5:
y=2(−5)2+7(−5)−9=50−35−9=6(>0). The function is positive in this interval.
- Interval (−4.5,1): Choose a test point like x=0.
Calculate y using x=0:
y=2(0)2+7(0)−9=−9(<0). The function is negative in this interval.
- Interval (1,∞): Choose a test point like x=2.
Calculate y using x=2:
y=2(2)2+7(2)−9=8+14−9=13(>0). The function is positive in this interval.
The positive domain of y is (−∞,−4.5)∪(1,∞).
The negative domain of y is (−4.5,1).
Thus, the domains are as follows:
x<0:−421<x<1
x>1 or x>0:x<−421
x < 0 : -4\frac{1}{2} < x < 1
x > 1 or x > 0 : x < -4\frac{1}{2}