Find the Domains: Analyzing y = -x² + 5x + 14 Quadratic Function
Question
Find the positive and negative domains of the following function:
y=−x2+5x+14
Step-by-Step Solution
We will analyze the function y=−x2+5x+14 to find where it is positive and negative. Let's begin by finding its roots:
Step 1: Calculate the discriminant for −x2+5x+14=0:
The discriminant Δ=b2−4ac=52−4(−1)(14)=25+56=81.
Step 2: Find the roots using the quadratic formula x=2a−b±Δ:
Here a=−1, b=5, and Δ=81, so x=−2−5±81. x=−2−5±9, giving roots x1=−−214=7 and x2=2.
Step 3: Identify the intervals on the number line divided by these roots: (−∞,2), (2,7), and (7,∞).
Step 4: Test each interval to determine if the function is positive or negative:
For x<2: Choose x=0: y=14, y>0.
For 2<x<7: Choose x=5: y=−52+5×5+14=−25+25+14=14, y>0.
For x>7: Choose x=10: y=−102+5×10+14=−100+50+14=−36, y<0.
Summary of intervals: y>0 for −2<x<7. y<0 for x<−2 or x>7.
Therefore, the positive domain of the function is (−2,7) and the negative domain is (−∞,−2) or (7,∞).
The correct choice matching our solution is Choice 2: x>0:−2<x<7 x>7 or x<0:x<−2