Find the Domains: Analyzing y = -x² + 5x + 14 Quadratic Function

Question

Find the positive and negative domains of the following function:

y=x2+5x+14 y=-x^2+5x+14

Step-by-Step Solution

We will analyze the function y=x2+5x+14 y = -x^2 + 5x + 14 to find where it is positive and negative. Let's begin by finding its roots:

  • Step 1: Calculate the discriminant for x2+5x+14=0 -x^2 + 5x + 14 = 0 :
    The discriminant Δ=b24ac=524(1)(14)=25+56=81\Delta = b^2 - 4ac = 5^2 - 4(-1)(14) = 25 + 56 = 81.
  • Step 2: Find the roots using the quadratic formula x=b±Δ2a x = \frac{-b \pm \sqrt{\Delta}}{2a} :
    Here a=1 a = -1 , b=5 b = 5 , and Δ=81 \Delta = 81 , so x=5±812 x = \frac{-5 \pm \sqrt{81}}{-2} .
    x=5±92 x = \frac{-5 \pm 9}{-2} , giving roots x1=142=7 x_1 = -\frac{14}{-2} = 7 and x2=2 x_2 = 2 .
  • Step 3: Identify the intervals on the number line divided by these roots: (,2) (-\infty, 2) , (2,7) (2, 7) , and (7,) (7, \infty) .
  • Step 4: Test each interval to determine if the function is positive or negative:
    • For x<2 x < 2 : Choose x=0 x = 0 : y=14 y = 14 , y>0 y > 0 .
    • For 2<x<7 2 < x < 7 : Choose x=5 x = 5 : y=52+5×5+14=25+25+14=14 y = -5^2 + 5 \times 5 + 14 = -25 + 25 + 14 = 14 , y>0 y > 0 .
    • For x>7 x > 7 : Choose x=10 x = 10 : y=102+5×10+14=100+50+14=36 y = -10^2 + 5 \times 10 + 14 = -100 + 50 + 14 = -36 , y<0 y < 0 .
  • Summary of intervals:
    y>0 y > 0 for 2<x<7 -2 < x < 7 .
    y<0 y < 0 for x<2 x < -2 or x>7 x > 7 .

Therefore, the positive domain of the function is (2,7) (-2, 7) and the negative domain is (,2) (-\infty, -2) or (7,) (7, \infty) .

The correct choice matching our solution is Choice 2:
x>0:2<x<7 x > 0 : -2 < x < 7
x>7 x > 7 or x<0:x<2 x < 0 : x < -2

Answer

x > 0 : -2 < x < 7

x > 7 or x < 0 : x < -2