Find the Domain of y=-(x+4)²+6: Analyzing Positive and Negative Inputs

Question

Find the positive and negative domains of the function below:

y=(x+4)2+6 y=-\left(x+4\right)^2+6

Step-by-Step Solution

The function given is y=(x+4)2+6 y = -\left(x+4\right)^2 + 6 . This is in vertex form y=a(xh)2+k y = a(x-h)^2 + k with vertex at (4,6)(-4, 6).

Step 1: To find the x-values for which the function is positive or negative, set y=0 y = 0 :

(x+4)2+6=0-\left(x+4\right)^2 + 6 = 0

(x+4)2=6\left(x+4\right)^2 = 6

Step 2: Solve for x x :

Take the square root of both sides:

x+4=±6x + 4 = \pm \sqrt{6} i.e., x=4±6x = -4 \pm \sqrt{6}

Step 3: Find where the function is positive or negative. The parabola opens downward, so the intervals are:

  • Negative domain: x<46x < -4 - \sqrt{6} and x>4+6x > -4 + \sqrt{6}; outside this interval.
  • Positive domain: 46<x<4+6-4 - \sqrt{6} < x < -4 + \sqrt{6}; within this interval.

Conclusively:

x>0:426<x<4+26 x > 0 : -4-\sqrt{26} < x < -4+\sqrt{26}

x>4+26 x > -4+\sqrt{26} or x<0:x<426 x < 0 : x < -4-\sqrt{26}

Therefore, the solution to this problem is as follows:

For x>0 x > 0 : 426<x<4+26 -4-\sqrt{26} < x < -4+\sqrt{26}

For x<0 x < 0 : x<426 x < -4-\sqrt{26} and (x>4+26)( x > -4 + \sqrt{26})

Answer

x > 0 : -4-\sqrt{26} < x < -4+\sqrt{26}

x > -4+\sqrt{26} or x < 0 : x< -4-\sqrt{26}