Calculate Base Length in Isosceles Triangle: Area 24 cm², Height 8 units

Question

Triangle DEF is an isosceles triangle

GE=X+2 DG=8

The area of the triangle is 24 cm².

DG is the height of the FE

Calculate the side FE

S=24S=24S=24888EEEDDDFFFGGGX+2

Step-by-Step Solution

To solve this problem, we will calculate the length of side FE FE using the area formula for a triangle:

  • Step 1: Use the formula for the area of a triangle: A=12×base×height A = \frac{1}{2} \times \text{base} \times \text{height} .

  • Step 2: Substitute the given values into the formula.
    We know that A=24cm2 A = 24 \, \text{cm}^2 and height=8cm \text{height} = 8 \, \text{cm} .

  • Step 3: Set up the equation: 24=12×base×8 24 = \frac{1}{2} \times \text{base} \times 8 .

  • Step 4: Simplify and solve for the base:24=82×base24=4×base 24 = \frac{8}{2} \times \text{base} \rightarrow 24 = 4 \times \text{base} .

  • Step 5: Solve for base \text{base} : base=244=6cm \text{base} = \frac{24}{4} = 6 \, \text{cm} .

Therefore, the side FE FE of the triangle is 6 cm.

Answer

6 cm