Area of a Scalene Triangle

🏆Practice area of a triangle

Area of a scalene triangle

Formula to calculate the area of a scalene triangle:

B1  - Area of the scalene triangle

Start practice

Test yourself on area of a triangle!

Complete the sentence:

To find the area of a right triangle, one must multiply ________________ by each other and divide by 2.

Practice more now

Area of the scalene triangle

It's very simple to calculate the area of a scalene triangle if we remember the formula and strictly follow the steps. Don't worry, we're here to teach you exactly what to pay attention to—we won't leave you adrift!
First of all, let's look at the formula you need to remember in order to calculate the area of the scalene triangle:

B1  - Area of the scalene triangle


Multiply the height by the base (the side corresponding to that height) and divide by 22.

Pay attention:

Make sure to place in the formula the corresponding height and side. That is, if a certain height and a side that does not form a right angle of 90o 90^o degrees with the used height is placed in the formula, it will be wrong.


Let's see it in an exercise

A2 - Exercise on calculating the area of a scalene triangle

Given the triangle ABCABC
Given that:
DB=6DB=6 Height
AC=7AC = 7
What is the area of the triangle?

Solution:
We will see that the given side ACAC actually forms, with the height, an angle of 90o 90^o  degrees.
After verifying the data, we will go to the formula and place there:
6×72=21\frac{6\times7}{2}=21

The area of the triangle ABCABC is 21cm2 21\operatorname{cm}^2


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Now we will calculate the area of a right triangle

A4 - we will calculate the area of a right triangle

Given the right triangle EFGEFG
Given that:
angle EFG=90EFG = 90
EF=5EF=5
FG=6FG=6
Calculate the area of the triangle.

Solution:
Let's remember that the key to calculating the area of any triangle is to multiply the height
by the corresponding side and then divide that product by22
In a right triangle, we actually already have the height!
We don't need to calculate another height and, in fact, we can afford to use the given height along with the side that forms the 90o 90^o degree angle.

In our exercise: The side is EFEF or FGFG

What conclusion do we reach?
The conclusion is that the formula to calculate the area of a right triangle is the product of the two legs divided by 22Let's put it in the formula and we will get:

6×52=15 \frac{6\times5}{2}=15
The area of the triangle EFGEFG is 15cm2 15cm^2


Now let's move on to calculating the area of an obtuse triangle

Calculating the area of an obtuse triangle is a bit more complicated, but I assure you that once you understand the basic principle, you will be able to calculate the area of an obtuse triangle even in your sleep...
In certain cases, in an obtuse triangle, we will be given a height that is outside the triangle.
As in the following illustration:

4 - Obtuse Triangle

In this illustration, the height AGAG has been drawn outside of the triangle. In reality, if we were to extend the side CBCB (marked in green), it would form a right angle with the height.
How is the area of an obtuse triangle calculated?

Remember the following guidelines and you will do well:

  • In calculating the area of the obtuse triangle, we refer to the actual side length of the triangle and not to its dotted extension.
  • In calculating the area of the obtuse triangle, we refer to the given height (even if it is outside the triangle) and look for the corresponding side, which together with it forms a 90o 90^o degree angle when extended outside the triangle.

Now let's solve an exercise so you can understand it more easily:

Given the triangle ABC \triangle ABC
Given that:
BD=2BD= 2 Height of the triangle
AD=5AD= 5
CD=12CD= 12

A5 - 12,5,2, Exercise on calculating the area of an obtuse triangle

What is the area of the triangle?

Solution:
We observe that the length of the side DB=2DB = 2
and the corresponding side that forms with it a 90o 90^o degree angle (the dotted part outside the triangle) is CACA
If we go back to the first point we needed to remember - we will understand that, to calculate the area, we must only take into account the length of ACAC without its dotted extension.
Therefore, we will see it as 125=7 12-5=7
AC=7AC=7
And now we can safely place the data, according to the basic formula:
7×22=7\frac{7\times2}{2}=7
The area of the triangle ABCABC is 7cm2 7cm^2


Examples and exercises with solutions for calculating the area of a scalene triangle

Exercise #1

Calculate the area of the right triangle below:

101010666888AAACCCBBB

Video Solution

Step-by-Step Solution

Due to the fact that AB is perpendicular to BC and forms a 90-degree angle,

it can be argued that AB is the height of the triangle.

Hence we can calculate the area as follows:

AB×BC2=8×62=482=24 \frac{AB\times BC}{2}=\frac{8\times6}{2}=\frac{48}{2}=24

Answer

24 cm²

Exercise #2

Calculate the area of the following triangle:

4.54.54.5777AAABBBCCCEEE

Video Solution

Step-by-Step Solution

To find the area of the triangle, we will use the formula for the area of a triangle:

Area=12×base×height \text{Area} = \frac{1}{2} \times \text{base} \times \text{height}

From the problem:

  • The length of the base BC BC is given as 7 units.
  • The height from point A A perpendicular to the base BC BC is given as 4.5 units.

Substitute the given values into the area formula:

Area=12×7×4.5 \text{Area} = \frac{1}{2} \times 7 \times 4.5

Calculate the expression step-by-step:

Area=12×31.5 \text{Area} = \frac{1}{2} \times 31.5

Area=15.75 \text{Area} = 15.75

Therefore, the area of the triangle is 15.75 15.75 square units. This corresponds to the given choice: 15.75 15.75 .

Answer

15.75

Exercise #3

What is the area of the triangle in the drawing?

5557778.68.68.6

Video Solution

Step-by-Step Solution

First, we will identify the data points we need to be able to find the area of the triangle.

the formula for the area of the triangle: height*opposite side / 2

Since it is a right triangle, we know that the straight sides are actually also the heights between each other, that is, the side that measures 5 and the side that measures 7.

We multiply the legs and divide by 2

5×72=352=17.5 \frac{5\times7}{2}=\frac{35}{2}=17.5

Answer

17.5

Exercise #4

Calculate the area of the triangle using the data in the figure below.

666888AAABBBCCC

Video Solution

Step-by-Step Solution

To calculate the area of the triangle, we will follow these steps:

  • Identify the base, CB, as 6 units.
  • Identify the height, AC, as 8 units.
  • Apply the area formula for a triangle.

Now, let's work through these steps:

The triangle is a right triangle with base CB=6 CB = 6 units and height AC=8 AC = 8 units.

The area of a triangle is determined using the formula:

Area=12×base×height \text{Area} = \frac{1}{2} \times \text{base} \times \text{height}

Substituting the known values, we have:

Area=12×6×8 \text{Area} = \frac{1}{2} \times 6 \times 8

Perform the multiplication and division:

Area=12×48=24 \text{Area} = \frac{1}{2} \times 48 = 24

Therefore, the area of the triangle is 24 24 square units.

Answer

24

Exercise #5

Calculate the area of the triangle below, if possible.

7.67.67.6444

Video Solution

Step-by-Step Solution

To solve this problem, we begin by analyzing the given triangle in the diagram:

While the triangle graphic suggests some line segments labeled with the values "7.6" and "4", it does not confirm these as directly usable as pure base or height without additional proven inter-contextual relationships establishing perpendicularity or side/unit equivalences.

Without a clear base and perpendicular height value, we cannot apply the triangle's area formula Area=12×base×height \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} effectively, nor do we have all side lengths for Heron's formula.

Therefore, due to insufficient information that specifically identifies necessary dimensions for area calculations such as clear height to a base or all sides' measures, the area of this triangle cannot be calculated.

The correct answer to the problem, based on insufficient explicit calculable details, is: It cannot be calculated.

Answer

It cannot be calculated.

Do you know what the answer is?
Start practice
Related Subjects