Find the positive and negative domains of the function below:
Find the positive and negative domains of the function below:
To solve the problem of finding the positive and negative domains of the function , follow these steps:
Start by setting the quadratic equation to zero:
.
Add 4 to both sides:
.
Take the square root of both sides to find the x-values where the parabola intersects the x-axis:
.
Solve for in both cases:
For :
.
For :
.
Thus, the roots of the quadratic are and . These points divide the x-axis into three intervals: x < 10\frac{1}{2} , 10\frac{1}{2} < x < 14\frac{1}{2} , and x > 14\frac{1}{2} .
Next, solve for where the function is positive or negative in these intervals:
Interval x < 10\frac{1}{2} :
Choose a test point .
The function value is .
Since 152.25 is positive, y > 0 for this interval.
Interval 10\frac{1}{2} < x < 14\frac{1}{2} :
Choose a test point .
The function value is .
Since is negative, y < 0 in this interval.
Interval x > 14\frac{1}{2} :
Choose a test point .
The function value is .
Since 2.25 is positive, y > 0 for this interval.
Thus, the function is negative for 10\frac{1}{2} < x < 14\frac{1}{2} and positive for x < 10\frac{1}{2} and x > 14\frac{1}{2} .
Therefore, the positive and negative domains are:
Positive domain: x < 10\frac{1}{2} or x > 14\frac{1}{2}
Negative domain: 10\frac{1}{2} < x < 14\frac{1}{2}
The correct answer is choice 4.
x < 0 : 10\frac{1}{2} < x < 14\frac{1}{2}
x>14\frac{1}{2} or x > : x < 10\frac{1}{2}