Find the Domain of (x-12½)²-4: Complete Function Analysis

Question

Find the positive and negative domains of the function below:

y=(x1212)24 y=\left(x-12\frac{1}{2}\right)^2-4

Step-by-Step Solution

To solve the problem of finding the positive and negative domains of the function y=(x1212)24 y = \left(x - 12\frac{1}{2}\right)^2 - 4 , follow these steps:

  • Start by setting the quadratic equation to zero:
    (x1212)24=0(x - 12\frac{1}{2})^2 - 4 = 0 .

  • Add 4 to both sides:
    (x1212)2=4(x - 12\frac{1}{2})^2 = 4 .

  • Take the square root of both sides to find the x-values where the parabola intersects the x-axis:
    x1212=±2 x - 12\frac{1}{2} = \pm 2 .

Solve for x x in both cases:

  • For x1212=2 x - 12\frac{1}{2} = 2 :
    x=1212+2=1412 x = 12\frac{1}{2} + 2 = 14\frac{1}{2} .

  • For x1212=2 x - 12\frac{1}{2} = -2 :
    x=12122=1012 x = 12\frac{1}{2} - 2 = 10\frac{1}{2} .

Thus, the roots of the quadratic are x=1012 x = 10\frac{1}{2} and x=1412 x = 14\frac{1}{2} . These points divide the x-axis into three intervals: x < 10\frac{1}{2} , 10\frac{1}{2} < x < 14\frac{1}{2} , and x > 14\frac{1}{2} .

Next, solve for where the function is positive or negative in these intervals:

  • Interval x < 10\frac{1}{2} :
    Choose a test point x=0 x = 0 .
    The function value is (01212)24=(1212)24=156.254=152.25 (0 - 12\frac{1}{2})^2 - 4 = (12\frac{1}{2})^2 - 4 = 156.25 - 4 = 152.25 .
    Since 152.25 is positive, y > 0 for this interval.

  • Interval 10\frac{1}{2} < x < 14\frac{1}{2} :
    Choose a test point x=12 x = 12 .
    The function value is (121212)24=(0.5)24=0.254=3.75 (12 - 12\frac{1}{2})^2 - 4 = (0.5)^2 - 4 = 0.25 - 4 = -3.75 .
    Since 3.75 -3.75 is negative, y < 0 in this interval.

  • Interval x > 14\frac{1}{2} :
    Choose a test point x=15 x = 15 .
    The function value is (151212)24=(2.5)24=6.254=2.25 (15 - 12\frac{1}{2})^2 - 4 = (2.5)^2 - 4 = 6.25 - 4 = 2.25 .
    Since 2.25 is positive, y > 0 for this interval.

Thus, the function is negative for 10\frac{1}{2} < x < 14\frac{1}{2} and positive for x < 10\frac{1}{2} and x > 14\frac{1}{2} .

Therefore, the positive and negative domains are:

Positive domain: x < 10\frac{1}{2} or x > 14\frac{1}{2}

Negative domain: 10\frac{1}{2} < x < 14\frac{1}{2}

The correct answer is choice 4.

Answer

x < 0 : 10\frac{1}{2} < x < 14\frac{1}{2}

x>14\frac{1}{2} or x > : x < 10\frac{1}{2}