Domain Analysis: Finding Valid Inputs for (x-8⅙)² - 1

Question

Find the positive and negative domains of the function below:

y=(x816)21 y=\left(x-8\frac{1}{6}\right)^2-1

Step-by-Step Solution

To find the positive and negative domains of y=(x816)21 y=\left(x-8\frac{1}{6}\right)^2-1 , we perform the following steps:

  • Step 1: Identify when y=0 y = 0 . Set (x816)21=0\left(x-8\frac{1}{6}\right)^2-1 = 0, solving gives (x816)2=1\left(x-8\frac{1}{6}\right)^2 = 1.
  • Step 2: Solve for x x to get (x8.1667)2=1 \left(x-8.1667\right)^2 = 1 . The equation gives x8.1667=±1 x-8.1667 = \pm 1 leading to two solutions: x=9.1667 x = 9.1667 and x=7.1667 x = 7.1667 .
  • Step 3: Determine the sign of y y in intervals (,7.1667)(-\infty, 7.1667), (7.1667,9.1667)(7.1667, 9.1667), and (9.1667,)(9.1667, \infty).
  • Step 4: Over the interval (7.1667,9.1667)(7.1667, 9.1667), y<0 y \lt 0 because the shifted-square is less than 1, making (x8.1667)21<0 (x-8.1667)^2-1 \lt 0 .
  • Step 5: Outside this interval, specifically (,7.1667)(-\infty, 7.1667) and (9.1667,)(9.1667, \infty), y>0 y \gt 0 .

The positive domain is x(,716)(916,) x \in (-\infty, 7\frac{1}{6}) \cup (9\frac{1}{6}, \infty) and the negative domain is x(716,916) x \in (7\frac{1}{6}, 9\frac{1}{6}) .

Therefore, the solution to the problem is:

x < 0 : x <7\frac{1}{6} < x < 9\frac{1}{6}

x > 9\frac{1}{6} or x > 0 : x <7\frac{1}{6}

Answer

x < 0 : x <7\frac{1}{6} < x < 9\frac{1}{6}

x > 9\frac{1}{6} or x > 0 : x <7\frac{1}{6}