Find the Domain of (x+8)²-2¼: Complete Function Analysis

Question

Find the positive and negative domains of the function below:

y=(x+8)2214 y=\left(x+8\right)^2-2\frac{1}{4}

Step-by-Step Solution

The given function is y=(x+8)2214 y = (x+8)^2 - 2\frac{1}{4} . To find where it is positive or negative, we first find the points where y=0 y = 0 .

Set the function equal to zero:

(x+8)294=0(x+8)^2 - \frac{9}{4} = 0

To handle the fraction, rewrite the equation:

(x+8)2=94(x+8)^2 = \frac{9}{4}

Now, take the square root of both sides:

x+8=±32x+8 = \pm \frac{3}{2}

This gives us two solutions for x x :

x=8+32x = -8 + \frac{3}{2} and x=832x = -8 - \frac{3}{2}

Calculating these values, we have:

x=162+32=132=612x = -\frac{16}{2} + \frac{3}{2} = -\frac{13}{2} = -6\frac{1}{2}

x=16232=192=912x = -\frac{16}{2} - \frac{3}{2} = -\frac{19}{2} = -9\frac{1}{2}

Next, test intervals around the roots to determine where the function is positive or negative:

  • For x<912x < -9\frac{1}{2}, an example point is x=10x = -10: (10+8)294=494(-10+8)^2 - \frac{9}{4} = 4 - \frac{9}{4}, which is positive.
  • For 912<x<612-9\frac{1}{2} < x < -6\frac{1}{2}, an example point is x=8x = -8: (8+8)294=094(-8+8)^2 - \frac{9}{4} = 0 - \frac{9}{4}, which is negative.
  • For x>612x > -6\frac{1}{2}, an example point is x=6x = -6: (6+8)294=494(-6+8)^2 - \frac{9}{4} = 4 - \frac{9}{4}, which is positive.

This leads to the conclusion that:

x<0:912<x<612 x < 0 :-9\frac{1}{2} < x < -6\frac{1}{2}

And for x>0 x > 0 , we have x>612 x > -6\frac{1}{2} or x<0:x<912 x < 0 : x < -9\frac{1}{2}

Thus, the correct answer is:

x<0:912<x<612 x < 0 :-9\frac{1}{2} < x < -6\frac{1}{2}

x>612 x > -6\frac{1}{2} or x>0:x<912 x > 0 : x < -9\frac{1}{2}

Answer

x < 0 :-9\frac{1}{2} < x < -6\frac{1}{2}

x > -6\frac{1}{2} or x > 0 : x < -9\frac{1}{2}