Find the Domain: (x-9⅓)² - 4 Function Analysis

Question

Find the positive and negative domains of the function below:

y=(x913)24 y=\left(x-9\frac{1}{3}\right)^2-4

Step-by-Step Solution

To find the positive and negative domains of the function y=(x913)24 y = \left(x - 9\frac{1}{3}\right)^2 - 4 , we will solve for when y=0 y = 0 and analyze the intervals:

First, set the function equal to zero:

  • (x913)24=0\left(x - 9\frac{1}{3}\right)^2 - 4 = 0
  • (x913)2=4\left(x - 9\frac{1}{3}\right)^2 = 4
  • Take the square root of both sides: x913=±2x - 9\frac{1}{3} = \pm 2

Calculate the roots:

  • For x913=2x - 9\frac{1}{3} = 2, x=1113x = 11\frac{1}{3}
  • For x913=2x - 9\frac{1}{3} = -2, x=713x = 7\frac{1}{3}

The roots are x=713x = 7\frac{1}{3} and x=1113x = 11\frac{1}{3}. These are the points where the function crosses the x-axis.

To determine the positive and negative domains, consider the following intervals:

  • When x<713x < 7\frac{1}{3}, the expression (x913)2(x - 9\frac{1}{3})^2 is greater than 4, making y>0y > 0, so the function is positive.
  • Between x=713x = 7\frac{1}{3} and x=1113x = 11\frac{1}{3}, the expression is less than 4, making y<0y < 0, so the function is negative.
  • When x>1113x > 11\frac{1}{3}, the expression goes back to being greater than 4, making y>0y > 0, so the function is positive.

Therefore, the domains are:

  • Positive: x>1113x > 11\frac{1}{3} or x<713x < 7\frac{1}{3}
  • Negative: 713<x<11137\frac{1}{3} < x < 11\frac{1}{3}

The correct choice based on this analysis is:

x < 0 : 7\frac{1}{3} < x < 11\frac{1}{3}

x > 11\frac{1}{3} or x > 0 : x < 7\frac{1}{3}

Answer

x < 0 : 7\frac{1}{3} < x < 11\frac{1}{3}

x > 11\frac{1}{3} or x > 0 : x < 7\frac{1}{3}