Find the Domain of y=-(x-4/9)²+1: Quadratic Function Analysis

Question

Find the positive and negative domains of the function below:

y=(x49)2+1 y=-\left(x-\frac{4}{9}\right)^2+1

Step-by-Step Solution

The function given is y=(x49)2+1 y = -\left(x-\frac{4}{9}\right)^2 + 1 , which is a downward-opening parabola because the coefficient of the squared term (a=1 a = -1 ) is negative.

The vertex form tells us the vertex of the parabola is at (49,1) \left(\frac{4}{9}, 1\right) .

The function will be zero where (x49)2+1=0 -\left(x-\frac{4}{9}\right)^2 + 1 = 0 . Solving this equation, we set:

(x49)2+1=0-\left(x-\frac{4}{9}\right)^2 + 1 = 0 (x49)2=1 \left(x-\frac{4}{9}\right)^2 = 1

Taking the square root of both sides gives:

x49=±1 x - \frac{4}{9} = \pm 1

Thus, x=49+1=139 x = \frac{4}{9} + 1 = \frac{13}{9} and x=491=59 x = \frac{4}{9} - 1 = -\frac{5}{9} .

These are the roots of the quadratic, splitting the domain into three intervals: (,59) (-\infty, -\frac{5}{9}) , (59,139) (-\frac{5}{9}, \frac{13}{9}) , and (139,) (\frac{13}{9}, \infty) .

We need to test the sign of y y in each interval:

  • For x<59 x < -\frac{5}{9} , choose a test point like x=1 x = -1 . Substituting into the function yields a negative value, hence the function is negative in this interval.
  • For 59<x<139 -\frac{5}{9} < x < \frac{13}{9} , choose a test point like x=0 x = 0 . Substituting into the function yields a positive value, hence the function is positive in this interval.
  • For x>139 x > \frac{13}{9} , choose a test point like x=2 x = 2 . Substituting into the function yields a negative value, hence the function is negative in this interval.

After analyzing these intervals, the function is positive for 59<x<139 -\frac{5}{9} < x < \frac{13}{9} and negative otherwise.

Therefore, the positive and negative domains of the function are as follows:

x>139 x > \frac{13}{9} or x<0:x<59 x < 0 : x < -\frac{5}{9}

x>0:59<x<139 x > 0 : -\frac{5}{9} < x < \frac{13}{9}

Answer

x > \frac{13}{9} or x < 0 : x < -\frac{5}{9}

x > 0 : -\frac{5}{9} < x < \frac{13}{9}