Find the positive and negative domains of the function below:
y=−(x−9)2+4
To solve the problem, we'll find the roots of the quadratic function:
- Step 1: Set y=0 in the equation −(x−9)2+4=0.
- Step 2: Solve for x:
−(x−9)2+4=0 leads to (x−9)2=4.
Take the square root: x−9=±2.
- Step 3: Solve for x:
x−9=2 gives x=11.
x−9=−2 gives x=7.
- Step 4: Analyze intervals determined by x=7 and x=11:
- For x<7, choose a value (e.g., x=0): y=−(0−9)2+4=−81+4=−77 (negative).
- For 7<x<11, choose a value (e.g., x=9): y=−(9−9)2+4=4 (positive).
- For x>11, choose a value (e.g., x=12): y=−(12−9)2+4=−9+4=−5 (negative).
Therefore, the positive and negative domains of the function are:
x>11 or x<0:x<7
x>0:7<x<11
In summary, the correct intervals where the function is positive or negative are identified. The function is positive for 7<x<11 and negative otherwise.