Find the Domain of y=-(x-9)²+4: Analyzing Quadratic Functions

Question

Find the positive and negative domains of the function below:

y=(x9)2+4 y=-\left(x-9\right)^2+4

Step-by-Step Solution

To solve the problem, we'll find the roots of the quadratic function:

  • Step 1: Set y=0 y = 0 in the equation (x9)2+4=0 -\left(x - 9\right)^2 + 4 = 0 .
  • Step 2: Solve for x x :
    (x9)2+4=0-\left(x - 9\right)^2 + 4 = 0 leads to (x9)2=4\left(x - 9\right)^2 = 4.
    Take the square root: x9=±2 x - 9 = \pm 2 .
  • Step 3: Solve for x x :
    x9=2 x - 9 = 2 gives x=11 x = 11 .
    x9=2 x - 9 = -2 gives x=7 x = 7 .
  • Step 4: Analyze intervals determined by x=7 x = 7 and x=11 x = 11 :
    • For x<7 x < 7 , choose a value (e.g., x=0 x = 0 ): y=(09)2+4=81+4=77 y = -\left(0 - 9\right)^2 + 4 = -81 + 4 = -77 (negative).
    • For 7<x<11 7 < x < 11 , choose a value (e.g., x=9 x = 9 ): y=(99)2+4=4 y = -\left(9 - 9\right)^2 + 4 = 4 (positive).
    • For x>11 x > 11 , choose a value (e.g., x=12 x = 12 ): y=(129)2+4=9+4=5 y = -\left(12 - 9\right)^2 + 4 = -9 + 4 = -5 (negative).

Therefore, the positive and negative domains of the function are:

x>11 x > 11 or x<0:x<7 x < 0 : x < 7

x>0:7<x<11 x > 0 : 7 < x < 11

In summary, the correct intervals where the function is positive or negative are identified. The function is positive for 7<x<11 7 < x < 11 and negative otherwise.

Answer

x > 11 or x < 0 : x < 7

x > 0 : 7 < x < 11