log89−log83+log4x2=log81.5+log82+log4(−x2−11x−9)
?=x
To solve the equation: log89−log83+log4x2=log81.5+log82+log4(−x2−11x−9), we proceed as follows:
Step 1: Simplify Both Sides
On the left-hand side (LHS), apply logarithmic subtraction:
log8(39)+log4x2=log83+log4x2.
Note log83 remains and convert log4x2 using the base switch to 8:
log4x2=2log4x=2×log822log8x=log82log8x.
Thus, the LHS combines into:
log83+log842log8x (because log4x2=2log4x).
On the right-hand side (RHS):
Combine:
log8(1.5×2)=log83.
Also apply for log4 term:
log4(−x2−11x−9)=log84log8(−x2−11x−9).
Step 2: Equalize Both Sides
Equate LHS and RHS logarithmic expressions:
log83+log842log8x=log83+log84log8(−x2−11x−9).
The log83 cancels out on both sides, leaving:
log842log8x=log84log8(−x2−11x−9).
Step 3: Solve for x
Since the denominators are equal, set the numerators equal:
2log8x=log8(−x2−11x−9).
Translate this into an exponential equation:
(x2)2=−x2−11x−9 or
82log8x=−x2−11x−9.
Let y=x, solve the resulting quadratic equation:
x2=−x2−11x−9.
Then, finding valid x by allowing roots of polynomial calculations should yield laws consistency:
−x2−11x−9=0 or rather substituting potential values. After appropriate checks:
The valid x that satisfies the problem is thus x=−4.5.