Solve: log₂(3x) × log₅(8) = log₅(a) + log₅(2a) for Variable X

Question

log23x×log58=log5a+log52a \log_23x\times\log_58=\log_5a+\log_52a

Given a>0 , express X by a

Video Solution

Solution Steps

00:15 Let's express X using A.
00:22 We’ll use the logarithm product formula. And remember to switch between bases when needed.
00:37 Now, let's go ahead and calculate the logarithm.
00:47 Next, substitute this solution in. And keep solving the problem!
01:02 Remember to use the formula for a logarithm of a power.
01:12 Now, compare the numbers carefully.
01:22 Let's isolate X, making it stand alone on one side of the equation.
01:37 Great job! That’s how we find the solution to this question.

Step-by-Step Solution

Let's solve the problem step-by-step:

We start with the equation:

log23x×log58=log5a+log52a \log_2 3x \times \log_5 8 = \log_5 a + \log_5 2a

We simplify the right side using the product rule for logarithms:

log5a+log52a=log5(a2a)=log5(2a2) \log_5 a + \log_5 2a = \log_5 (a \cdot 2a) = \log_5 (2a^2)

Next, we simplify log58\log_5 8 on the left side:

log58=log5(23)=3log52 \log_5 8 = \log_5 (2^3) = 3 \log_5 2

Thus, we substitute into the original equation:

log23x×3log52=log5(2a2) \log_2 3x \times 3 \log_5 2 = \log_5 (2a^2)

Now, divide both sides by 3log523 \log_5 2:

log23x=log5(2a2)3log52 \log_2 3x = \frac{\log_5 (2a^2)}{3 \log_5 2}

Using the change of base formula, express log5(2a2)\log_5 (2a^2) and log52\log_5 2 with base 2:

log5(2a2)=log2(2a2)log25 \log_5 (2a^2) = \frac{\log_2 (2a^2)}{\log_2 5} log52=log22log25=1log25 \log_5 2 = \frac{\log_2 2}{\log_2 5} = \frac{1}{\log_2 5}

Substitute these into the equation:

log23x=log2(2a2)3 \log_2 3x = \frac{\log_2 (2a^2)}{3}

This implies:

log23x=13log2(2a2) \log_2 3x = \frac{1}{3} \log_2 (2a^2)

Raising 2 to both sides of the equation to remove the logarithms:

3x=(2a2)13 3x = (2a^2)^{\frac{1}{3}}

Therefore, solving for x x :

x=13(2a2)13=132a23 x = \frac{1}{3} (2a^2)^{\frac{1}{3}} = \frac{1}{3} \cdot \sqrt[3]{2a^2}

Thus, we conclude:

x=2a2273 x = \sqrt[3]{\frac{2a^2}{27}}

Therefore, the value of x x in terms of a a is 2a2273 \sqrt[3]{\frac{2a^2}{27}} .

Answer

2a2273 \sqrt[3]{\frac{2a^2}{27}}