Find X
ln8x×log7e2=2(log78+log7x2−log7x)
To solve the problem, we proceed as follows:
Given the equation:
ln8x×log7e2=2(log78+log7x2−log7x)
Step 1: Express ln8x using the change of base formula:
ln8x=log7elog7(8x)
Step 2: Substitute into the original equation:
log7elog7(8x)⋅log7e2=2(log78+log7x2−log7x)
Step 3: Simplify using log7e2=2log7e:
log7elog7(8x)⋅2log7e=2(log78+log7x2−log7x)
Step 4: Cancel log7e and simplify:
log7(8x)⋅2=2(log78+log7x2−log7x)
Step 5: Cancel 2 on both sides:
log7(8x)=log78+log7x2−log7x
Step 6: Use the properties of logarithms:
log7(8x)=log78+log7xx2
Step 7: Simplify log7xx2:
log7(8x)=log78+log7x
Step 8: Use properties logbm+logbn=logb(mn):
log7(8x)=log7(8x)
Step 9: This equality is true for all x > 0, considering domain restrictions:
\text{For } x > 0
Thus, the solution is valid for all x such that x > 0
Therefore, the correct solution is, For all \mathbf{x > 0}.