Solve Mixed Logarithmic Equation: ln(8x) and log₇(e²) Problem

Question

Find X

ln8x×log7e2=2(log78+log7x2log7x) \ln8x\times\log_7e^2=2(\log_78+\log_7x^2-\log_7x)

Video Solution

Solution Steps

00:00 Solve
00:03 We'll use the formula to convert to log
00:12 We'll use this formula in our exercise
00:25 We'll use the formula for logical multiplication, we'll get the log of their product
00:33 We'll use this formula in our exercise
00:58 We'll use the formula for logical subtraction, we'll get the log of their quotient
01:08 We'll use this formula in our exercise
01:23 Let's simplify as much as possible
01:33 We'll use the formula for logical multiplication, we'll switch between the numbers
01:48 We'll use this formula in our exercise
02:08 We'll calculate the log, and substitute the solution in the exercise
02:28 We got an equation
02:33 Let's find the domain for finding the solution
02:48 And this is the solution to the question

Step-by-Step Solution

To solve the problem, we proceed as follows:

Given the equation:

ln8x×log7e2=2(log78+log7x2log7x) \ln 8x \times \log_7 e^2 = 2(\log_7 8 + \log_7 x^2 - \log_7 x)

  • Step 1: Express ln8x\ln 8x using the change of base formula:

  • ln8x=log7(8x)log7e\ln 8x = \frac{\log_7 (8x)}{\log_7 e}

  • Step 2: Substitute into the original equation:

  • log7(8x)log7elog7e2=2(log78+log7x2log7x)\frac{\log_7 (8x)}{\log_7 e} \cdot \log_7 e^2 = 2(\log_7 8 + \log_7 x^2 - \log_7 x)

  • Step 3: Simplify using log7e2=2log7e\log_7 e^2 = 2 \log_7 e:

  • log7(8x)log7e2log7e=2(log78+log7x2log7x)\frac{\log_7 (8x)}{\log_7 e} \cdot 2 \log_7 e = 2(\log_7 8 + \log_7 x^2 - \log_7 x)

  • Step 4: Cancel log7e \log_7 e and simplify:

  • log7(8x)2=2(log78+log7x2log7x)\log_7 (8x) \cdot 2 = 2(\log_7 8 + \log_7 x^2 - \log_7 x)

  • Step 5: Cancel 2 on both sides:

  • log7(8x)=log78+log7x2log7x\log_7 (8x) = \log_7 8 + \log_7 x^2 - \log_7 x

  • Step 6: Use the properties of logarithms:

  • log7(8x)=log78+log7x2x\log_7 (8x) = \log_7 8 + \log_7 \frac{x^2}{x}

  • Step 7: Simplify log7x2x\log_7 \frac{x^2}{x}:

  • log7(8x)=log78+log7x\log_7 (8x) = \log_7 8 + \log_7 x

  • Step 8: Use properties logbm+logbn=logb(mn)\log_b m + \log_b n = \log_b (mn):

  • log7(8x)=log7(8x)\log_7 (8x) = \log_7 (8x)

  • Step 9: This equality is true for all x > 0, considering domain restrictions:

  • \text{For } x > 0

Thus, the solution is valid for all x x such that x > 0

Therefore, the correct solution is, For all \mathbf{x > 0}.

Answer

For all x>0


More Questions