Solve the Multi-Base Logarithm Equation: log₆₄ × log₉x = (log₆x² - log₆x)(log₉2.5 + log₉1.6)

log64×log9x=(log6x2log6x)(log92.5+log91.6) \log_64\times\log_9x=(\log_6x^2-\log_6x)(\log_92.5+\log_91.6)

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:15 Let's solve it together!
00:19 First, let's find the domain of the function. This shows us all possible input values.
00:35 Now, we have identified the domain. Great job!
00:45 Let's use the formula for logical subtraction to find the log quotient. Follow along closely!
01:00 Now, let's apply this formula to our exercise.
01:09 Awesome! Let's use the formula for logical addition, to find their log product.
01:15 Are you ready to use this new formula in our problem? Let's do it together.
01:49 Now, we'll use the formula for logical multiplication to swap the numbers.
01:56 Great! Let's apply this formula to our exercise. Keep it up!
02:18 Alright, let's simplify everything we can! You're doing fantastic!
02:33 And there we have it! This is the solution to the question. Well done!

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

log64×log9x=(log6x2log6x)(log92.5+log91.6) \log_64\times\log_9x=(\log_6x^2-\log_6x)(\log_92.5+\log_91.6)

2

Step-by-step solution

To solve this problem, we'll carefully apply logarithmic properties:

  • Step 1: Simplify the left-hand side:
    The left-hand side is given as log64×log9x \log_64 \times \log_9x . We simplify log64 \log_64 :
    log64=log4log6=log(22)log6=2log2log6\log_64 = \frac{\log 4}{\log 6} = \frac{\log(2^2)}{\log 6} = \frac{2\log 2}{\log 6}.
    Therefore, the left-hand side becomes 2log2log6×log9x\frac{2\log 2}{\log 6} \times \log_9x.
  • Step 2: Simplify the right-hand side:
    The right-hand side is (log6x2log6x)(log92.5+log91.6)(\log_6x^2 - \log_6x)(\log_92.5 + \log_91.6).
    First, simplify log6x2log6x=2log6xlog6x=log6x\log_6x^2 - \log_6x = 2\log_6x - \log_6x = \log_6x.
    For the other part, apply the product property: log92.5+log91.6=log9(2.5×1.6)\log_92.5 + \log_91.6 = \log_9(2.5 \times 1.6).
    Calculate 2.5×1.6=4.02.5 \times 1.6 = 4.0, hence log94\log_94.
  • Step 3: Equate and simplify:
    Now equate the simplified expressions: 2log2log6×log9x=log6xlog94\frac{2\log 2}{\log 6} \times \log_9x = \log_6x \cdot \log_94.
    Change all logs to a common base (let's use natural log ln \ln) and solve:
  • Step 4: Apply base conversion:
    log9x=lnxln9\log_9x = \frac{\ln x}{\ln 9}, log6x=lnxln6\log_6x = \frac{\ln x}{\ln 6}, and log94=ln4ln9\log_94 = \frac{\ln 4}{\ln 9}.
  • Step 5: Combine and solve:
    Perform algebraic manipulation and simplification:
    The equation becomes 2ln2ln6ln9lnx=lnxln4ln6ln9\frac{2\ln 2}{\ln 6 \ln 9} \cdot \ln x = \frac{\ln x \cdot \ln 4}{\ln 6 \ln 9}.
    Cancel lnx\ln x (non-zero due to x>0x > 0) and solve for positive xx.
  • Conclude with the solution constraints:
    Given the properties and the domain involved, solution holds for all 0<x0 < x.

Therefore, the correct solution is: For all 0<x0 < x.

3

Final Answer

For all 0<x 0 < x

Practice Quiz

Test your knowledge with interactive questions

\( \log_{10}3+\log_{10}4= \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Rules of Logarithms questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations