Find X
7x+1+(2x+3)2=(4x+2)2
To solve the equation 7x+1+(2x+3)2=(4x+2)2, we follow these steps:
- Step 1: Expand both sides using the square of a binomial formula.
- Step 2: Simplify the equation to form a standard quadratic equation.
- Step 3: Use the quadratic formula to find the roots of the equation.
Step 1: Expand the squares.
The left side: (2x+3)2=4x2+12x+9.
The right side: (4x+2)2=16x2+16x+4.
Step 2: Substitute back into the original equation and simplify:
7x+1+4x2+12x+9=16x2+16x+4.
Combine like terms:
4x2+19x+10=16x2+16x+4.
Step 3: Move all terms to one side:
4x2+19x+10−16x2−16x−4=0.
Which simplifies to:
−12x2+3x+6=0.
Step 4: Divide by -3 to simplify:
4x2−x−2=0.
Step 5: Use the quadratic formula:
x=2a−b±b2−4ac, where a=4, b=−1, c=−2.
Calculate the discriminant:
b2−4ac=(−1)2−4⋅4⋅(−2)=1+32=33.
Calculate the roots:
x=81±33.
Therefore, the solution to the problem is x=81±33.
81±33