Area of a Trapezoid - Examples, Exercises and Solutions

Understanding Area of a Trapezoid

Complete explanation with examples

Area of a right trapezoid

In order to calculate the area of a right-angled trapezoid, we will use the following formula:

Diagram of a right-angled trapezoid with the formula for calculating its area:  ( Base 1 + Base 2 ) × height (Base 1+Base 2)×height. The illustration highlights the two parallel bases, the height, and the application of the formula to find the area. Featured in a tutorial on calculating the area of trapezoids.


The formula for calculating the area of a right-angled trapezoid is the same as every trapezoid's area - the sum of the bases times the height divided by 2.

The leg connecting the 2 right angles is also the height of the trapezoid!

Detailed explanation

Practice Area of a Trapezoid

Test your knowledge with 21 quizzes

Given the following trapezoid:

AAABBBCCCDDD5104

Calculate the area of the trapezoid ABCD.

Examples with solutions for Area of a Trapezoid

Step-by-step solutions included
Exercise #1

Given the trapezoid:

999121212555AAABBBCCCDDDEEE

What is the area?

Step-by-Step Solution

Formula for the area of a trapezoid:

(base+base)2×altura \frac{(base+base)}{2}\times altura

We substitute the data into the formula and solve:

9+122×5=212×5=1052=52.5 \frac{9+12}{2}\times5=\frac{21}{2}\times5=\frac{105}{2}=52.5

Answer:

52.5

Video Solution
Exercise #2

The trapezoid ABCD is shown below.

Base AB = 6 cm

Base DC = 10 cm

Height (h) = 5 cm

Calculate the area of the trapezoid.

666101010h=5h=5h=5AAABBBCCCDDD

Step-by-Step Solution

First, we need to remind ourselves of how to work out the area of a trapezoid:

Formula for calculating trapezoid area

Now let's substitute the given data into the formula:

(10+6)*5 =
2

Let's start with the upper part of the equation:

16*5 = 80

80/2 = 40

Answer:

40 cm²

Video Solution
Exercise #3

The trapezoid ABCD is shown below.

AB = 2.5 cm

DC = 4 cm

Height (h) = 6 cm

Calculate the area of the trapezoid.

2.52.52.5444h=6h=6h=6AAABBBCCCDDD

Step-by-Step Solution

First, let's remind ourselves of the formula for the area of a trapezoid:

A=(Base + Base) h2 A=\frac{\left(Base\text{ }+\text{ Base}\right)\text{ h}}{2}

We substitute the given values into the formula:

(2.5+4)*6 =
6.5*6=
39/2 = 
19.5

Answer:

1912 19\frac{1}{2}

Video Solution
Exercise #4

The trapezoid ABCD is shown below.

AB = 5 cm

DC = 9 cm

Height (h) = 7 cm

Calculate the area of the trapezoid.

555999h=7h=7h=7AAABBBCCCDDD

Step-by-Step Solution

The formula for the area of a trapezoid is:

Area=12×(Base1+Base2)×Height \text{Area} = \frac{1}{2} \times (\text{Base}_1 + \text{Base}_2) \times \text{Height}

We are given the following dimensions:

  • Base AB=5AB = 5 cm
  • Base DC=9DC = 9 cm
  • Height h=7h = 7 cm

Substituting these values into the formula, we have:

Area=12×(5+9)×7 \text{Area} = \frac{1}{2} \times (5 + 9) \times 7

First, add the lengths of the bases:

5+9=14 5 + 9 = 14

Now substitute back into the formula:

Area=12×14×7 \text{Area} = \frac{1}{2} \times 14 \times 7

Calculate the multiplication:

12×14=7 \frac{1}{2} \times 14 = 7

Then multiply by the height:

7×7=49 7 \times 7 = 49

Thus, the area of the trapezoid is 49 cm2^2.

Answer:

49 cm

Video Solution
Exercise #5

What is the area of the trapezoid in the diagram below?

777333AAABBBCCCDDDEEEFFF4

Step-by-Step Solution

To determine the area of the trapezoid, we will follow these steps:

  • Step 1: Identify the provided dimensions of the trapezoid.
  • Step 2: Apply the formula for the area of a trapezoid.
  • Step 3: Perform the arithmetic to calculate the area.

Let's proceed through these steps:

Step 1: Identify the dimensions
The given dimensions from the diagram are:
Height h=3 h = 3 cm.
One base b1=4 b_1 = 4 cm.
The other base b2=7 b_2 = 7 cm.

Step 2: Apply the area formula
To find the area A A of the trapezoid, use the formula:
A=12×(b1+b2)×h A = \frac{1}{2} \times (b_1 + b_2) \times h

Step 3: Calculation
Substituting the known values into the formula:
A=12×(4+7)×3 A = \frac{1}{2} \times (4 + 7) \times 3

Simplify the expression:
A=12×11×3 A = \frac{1}{2} \times 11 \times 3

Calculate the result:
A=12×33=332=16.5 A = \frac{1}{2} \times 33 = \frac{33}{2} = 16.5 cm²

The area of the trapezoid is therefore 16.5 16.5 cm².

Given the choices, this corresponds to choice : 16.5 16.5 cm².

Therefore, the correct solution to the problem is 16.5 16.5 cm².

Answer:

16.5 16.5 cm²

Video Solution

More Area of a Trapezoid Questions

Continue Your Math Journey

Practice by Question Type