A polygon defines a geometric shape that is made up of sides. In other words, under the umbrella of polygons fall the following square, rectangle, parallelogram, trapezoid, and many more.
Master rectangle area calculations and polygon area problems with step-by-step practice. Learn formulas, solve complex shapes, and build confidence in geometry.
A polygon defines a geometric shape that is made up of sides. In other words, under the umbrella of polygons fall the following square, rectangle, parallelogram, trapezoid, and many more.
For example, a triangle has 3 sides, every quadrilateral has 4 sides, and so on.
We have already learned to calculate the areas of standard polygons. There are also non-standard polygons, for which there is no specific formula. However, their area of complex shapes can be calculated using two methods:
Let's demonstrate this using a simple exercise:

Here is a drawing of a polygon.
We need to calculate its area. From the start, we can see that this is not a standard polygon, so we will use the first method to calculate its area. We will divide the polygon as shown in the drawing, and we should obtain two rectangles.
According to the data shown in the drawing, in the rectangle on the right side we obtain the side lengths of 3 and 6, therefore the area of the rectangle will be 18 (multiplication of the two values). In the rectangle on the left side we obtain the side lengths of 4 and 7, therefore the area of the rectangle will be 28 (multiplication of the two values). Thus, the total area of the polygon will be the sum of the two areas we calculated separately, meaning, 18+28=46.
Given the following trapezoid:
Calculate the area of the trapezoid ABCD.
Complete the sentence:
To find the area of a right triangle, one must multiply ________________ by each other and divide by 2.
To solve this problem, begin by identifying the elements involved in calculating the area of a right triangle. In a right triangle, the two sides that form the right angle are known as the legs. These legs act as the base and height of the triangle.
The formula for the area of a triangle is given by:
In the case of a right triangle, the base and height are the two legs. Therefore, the process of finding the area involves multiplying the lengths of the two legs together and then dividing the product by 2.
Based on this analysis, the correct way to complete the sentence in the problem is:
To find the area of a right triangle, one must multiply the two legs by each other and divide by 2.
Answer:
the two legs
A parallelogram has a length equal to 6 cm and a height equal to 4.5 cm.
Calculate the area of the parallelogram.
To solve this problem, let's apply the formula for the area of a parallelogram:
The formula for the area of a parallelogram is .
Here, the base of the parallelogram is 6 cm, and the height is 4.5 cm.
Substituting these values into the formula gives:
Performing the multiplication:
square centimeters.
Therefore, the area of the parallelogram is .
Referring to the given multiple-choice answers, the correct choice is:
Choice 3: .
Answer:
27
Look at the rectangle ABCD below.
Side AB is 6 cm long and side BC is 4 cm long.
What is the area of the rectangle?
Remember that the formula for the area of a rectangle is width times height
We are given that the width of the rectangle is 6
and that the length of the rectangle is 4
Therefore we calculate:
6*4=24
Answer:
24 cm²
Calculate the area of the following triangle:
The formula for calculating the area of a triangle is:
(the side * the height from the side down to the base) /2
That is:
We insert the existing data as shown below:
Answer:
10
Calculate the area of the triangle using the data in the figure below.
To solve the problem of finding the area of triangle , we follow these steps:
Let's go through each step in detail:
Step 1: From the figure, the base and height .
Step 2: The formula for the area of a triangle is: .
Step 3: Substituting the known values into the formula, we get:
Therefore, the area of triangle is 10.
Answer:
10