# Central Angle in a Circle - Examples, Exercises and Solutions

### Central angle in a circle

We are here to define what a central angle in a circle is and give you tips to remember its definition and properties in the best and most logical way.
Before talking about the central angle in a circle, let's take a moment to look at its name - a central angle.

Through its name, we can recognize that it has some connection with the center of the circle.
Great, now let's move on to the definition of a central angle and it will make much more sense to us.

### What is a central angle in a circle?

A central angle in a circle is an angle whose vertex is the center of the circle and its ends are the radii of the circle
Therefore, its ends are on the top part of the circle.
If we connect all the central angles in the same complete circle - we will obtain $360°$.

## Examples with solutions for Central Angle in a Circle

### Exercise #1

Where does a point need to be so that its distance from the center of the circle is the shortest?

### Step-by-Step Solution

Let's remember that the circle is actually the inner part of the circumference, meaning the enclosed area within the frame of the circumference.

Therefore, a point whose distance is less than the radius from the center of the circle will necessarily be inside the circle.

Inside

### Exercise #2

A point whose distance from the center of the circle is _______ than the radius, is outside the circle.

### Step-by-Step Solution

Let's remember that the circle is actually the inner part of the circumference, meaning the enclosed area within the frame of the circumference.

Therefore, a point whose distance is greater than the center of the circle will necessarily be outside the circle.

greater

### Exercise #3

In which of the circles is the point marked in the circle and not on the circumference?

### Step-by-Step Solution

Let's remember that the circular line draws the shape of the circle, and the inner part is called a disk.

Therefore, in diagram B, the point is located in the inner part, meaning inside the disk.

### Exercise #4

A circle has the following equation:
$x^2-8ax+y^2+10ay=-5a^2$

Point O is its center and is in the second quadrant ($a\neq0$)

Use the completing the square method to find the center of the circle and its radius in terms of $a$.

### Step-by-Step Solution

Let's recall that the equation of a circle with its center at $O(x_o,y_o)$ and its radius $R$ is:

$(x-x_o)^2+(y-y_o)^2=R^2$Now, let's now have a look at the equation for the given circle:

$x^2-8ax+y^2+10ay=-5a^2$
We will try rearrange this equation to match the circle equation, or in other words we will ensure that on the left side is the sum of two squared binomial expressions, one for x and one for y.

We will do this using the "completing the square" method:

Let's recall the short formula for squaring a binomial:

$(c\pm d)^2=c^2\pm2cd+d^2$We'll deal separately with the part of the equation related to x in the equation (underlined):

$\underline{ x^2-8ax}+y^2+10ay=-5a^2$

We'll isolate these two terms from the equation and deal with them separately.

We'll present these terms in a form similar to the form of the first two terms in the shortcut formula (we'll choose the subtraction form of the binomial squared formula since the term in the first power we are dealing with is$8ax$, which has a negative sign):

$\underline{ x^2-8ax} \textcolor{blue}{\leftrightarrow} \underline{ c^2-2cd+d^2 }\\ \downarrow\\ \underline{\textcolor{red}{x}^2\stackrel{\downarrow}{-2 }\cdot \textcolor{red}{x}\cdot \textcolor{green}{4a}} \textcolor{blue}{\leftrightarrow} \underline{ \textcolor{red}{c}^2\stackrel{\downarrow}{-2 }\textcolor{red}{c}\textcolor{green}{d}\hspace{2pt}\boxed{+\textcolor{green}{d}^2}} \\$Notice that compared to the short formula (which is on the right side of the blue arrow in the previous calculation), we are actually making the comparison:

$\begin{cases} x\textcolor{blue}{\leftrightarrow}c\\ 4a\textcolor{blue}{\leftrightarrow}d \end{cases}$ Therefore, if we want to get a squared binomial form from these two terms (underlined in the calculation), we will need to add the term$(4a)^2$, but we don't want to change the value of the expression, and therefore we will also subtract this term from the expression.

That is, we will add and subtract the term (or expression) we need to "complete" to the binomial squared form,

In the following calculation, the "trick" is highlighted (two lines under the term we added and subtracted from the expression),

Next, we'll put the expression in the squared binomial form the appropriate expression (highlighted with colors) and in the last stage we'll simplify the expression:

$x^2-2\cdot x\cdot 4a\\ x^2-2\cdot x\cdot4a\underline{\underline{+(4a)^2-(4a)^2}}\\ \textcolor{red}{x}^2-2\cdot \textcolor{red}{x}\cdot \textcolor{green}{4a}+(\textcolor{green}{4a})^2-16a^2\\ \downarrow\\ \boxed{ (\textcolor{red}{x}-\textcolor{green}{4a})^2-16a^2}\\$Let's summarize the steps we've taken so far for the expression with x.

We'll do this within the given equation:

$x^2-8ax+y^2+10ay=-5a^2 \\ \textcolor{red}{x}^2-2\cdot \textcolor{red}{x}\cdot\textcolor{green}{4a}\underline{\underline{+\textcolor{green}{(4a)}^2-(4a)^2}}+y^2+10ay=-5a^2\\ \downarrow\\ (\textcolor{red}{x}-\textcolor{green}{4a})^2-16a^2+y^2+10ay=-5a^2\\$We'll continue and do the same thing for the expressions with y in the resulting equation:

(Now we'll choose the addition form of the squared binomial formula since the term in the first power we are dealing with $10ay$ has a positive sign)

$(x-4a)^2-16a^2+\underline{y^2+10ay}=-5a^2\\ \downarrow\\ (x-4a)^2-16a^2+\underline{y^2+2\cdot y \cdot 5a}=-5a^2\\ (x-4a)^2-16a^2+\underline{y^2+2\cdot y \cdot 5a\underline{\underline{+(5a)^2-(5a)^2}}}=-5a^2\\ \downarrow\\ (x-4a)^2-16a^2+\underline{\textcolor{red}{y}^2+2\cdot\textcolor{red}{ y}\cdot \textcolor{green}{5a}+\textcolor{green}{(5a)}^2-25a^2}=-5a^2\\ \downarrow\\ (x-4a)^2-16a^2+(\textcolor{red}{y}+\textcolor{green}{5a})^2-25a^2=-5a^2\\ \boxed{(x-4a)^2+(y+5a)^2=36a^2}$In the last step, we move the free numbers to the second side and combine like terms.

Now that the given circle equation is in the form of the general circle equation mentioned earlier, we can easily extract both the center of the given circle and its radius:

$(x-\textcolor{purple}{x_o})^2+(y-\textcolor{orange}{y_o})^2=\underline{\underline{R^2}} \\ \updownarrow \\ (x-\textcolor{purple}{4a})^2+(y+\textcolor{orange}{5a})^2=\underline{\underline{36a^2}}\\ \downarrow\\ (x-\textcolor{purple}{4a})^2+(y\stackrel{\downarrow}{- }(-\textcolor{orange}{5a}))^2=\underline{\underline{36a^2}}\\$

In the last step, we made sure to get the exact form of the general circle equation—that is, where only subtraction is performed within the squared expressions (emphasized with an arrow)

Therefore, we can conclude that the center of the circle is at:$\boxed{O(x_o,y_o)\leftrightarrow O(4a,-5a)}$ and extract the radius of the circle by solving a simple equation:

$R^2=36a^2\hspace{6pt}\text{/}\sqrt{\hspace{4pt}}\\ \rightarrow \boxed{R=\pm6a}$

Remember that the radius of the circle, by its definition is the distance between any point on the diameter and the center of the circle. Since it is positive, we must disqualify one of the options we got for the radius.

To do this, we will use the remaining information we haven't used yet—which is that the center of the given circle O is in the second quadrant.

That is:

O(x_o,y_o)\leftrightarrow x_o<0,\hspace{4pt}y_o>0 (Or in words: the x-value of the circle's center is negative and the y-value of the circle's center is positive)

Therefore, it must be true that:

\begin{cases} x_o<0\rightarrow (x_o=4a)\rightarrow 4a<0\rightarrow\boxed{a<0}\\ y_o>0\rightarrow (y_o=-5a)\rightarrow -5a>0\rightarrow\boxed{a<0} \end{cases}

We concluded that a<0 and since the radius of the circle is positive we conclude that necessarily:

$\rightarrow \boxed{R=-6a}$Let's summarize:

$\boxed{O(4a,-5a), \hspace{4pt}R=-6a}$Therefore, the correct answer is answer d.

$O(4a,-5a),\hspace{4pt}R=-6a$

### Exercise #5

In which of the circles is the segment drawn the radius?

### Exercise #6

Calculate the length of the arc marked in red given that the circumference is 36.

2

### Exercise #7

How many times longer is the radius of the red circle than the radius of the blue circle?

5

### Exercise #8

Calculate the length of the arc marked in red given that the circumference is 12.

8

### Exercise #9

Calculate the area of the section painted red given that the area of the circle is 12.

8

### Exercise #10

How many times longer is the radius of the red circle, which has a diameter of 24, than the radius of the blue circle, which has a diameter of 12?

2

### Exercise #11

Calculate the length of the arc marked in red given that the circumference is equal to 24.

### Video Solution

$10$

### Exercise #12

How many times longer is the radius of the red circle than the radius of the blue circle?

### Video Solution

$2$

### Exercise #13

Calculate the length of the arc marked in red given that the circumference is 12.

2

### Exercise #14

Calculate the length of the arc marked in red given that the circumference is 6.

### Video Solution

$\frac{5}{6}$

### Exercise #15

Calculate the length of the arc marked in red given that the circumference is 18.