The parallelogram ABCD contains the rectangle AEFC inside it, which has a perimeter of 24.
AE = 8
BC = 5
What is the area of the parallelogram?
We have hundreds of course questions with personalized recommendations + Account 100% premium
The parallelogram ABCD contains the rectangle AEFC inside it, which has a perimeter of 24.
AE = 8
BC = 5
What is the area of the parallelogram?
In the first step, we must find the length of EC, which we will identify with an X.
We know that the perimeter of a rectangle is the sum of all its sides (AE+EC+CF+FA),
Since in a rectangle the opposite sides are equal, the formula can also be written like this: 2AE=2EC.
We replace the known data:
We isolate X:
and divide by 2:
Now we can use the Pythagorean theorem to find EB.
(Pythagoras: )
We isolate the variable
We take the square root of the equation.
The area of a parallelogram is the height multiplied by the side to which the height descends, that is.
And therefore we will apply the area formula:
44
A parallelogram has a length equal to 6 cm and a height equal to 4.5 cm.
Calculate the area of the parallelogram.
Get unlimited access to all 19 Parallelogram questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime