Find the Domain of Function f(x)=(x+3)²-5: Positive and Negative Regions

Question

Find the positive and negative domains of the function below:

y=(x+3)25 y=\left(x+3\right)^2-5

Step-by-Step Solution

To find the positive and negative domains of the function y=(x+3)25 y = (x+3)^2 - 5 , we first identify the roots by setting y=0 y = 0 and solving for x x .

Let's solve (x+3)25=0(x+3)^2 - 5 = 0:

  1. Start with the equation: (x+3)25=0(x+3)^2 - 5 = 0
  2. Add 5 to both sides: (x+3)2=5(x+3)^2 = 5
  3. Take the square root of both sides: x+3=±5x+3 = \pm \sqrt{5}
  4. Solve for x x :
    • x=3+5 x = -3 + \sqrt{5}
    • x=35 x = -3 - \sqrt{5}

Thus, the roots of the function are x=3+5 x = -3 + \sqrt{5} and x=35 x = -3 - \sqrt{5} .

Since the parabola opens upwards (the coefficient of (x+3)2(x+3)^2 is positive), the function y y is:

  • Negative between the roots: 35<x<3+5 -3 - \sqrt{5} < x < -3 + \sqrt{5}
  • Positive outside these roots: x<35 x < -3 - \sqrt{5} and x>3+5 x > -3 + \sqrt{5}

Therefore, the positive and negative domains are:

  • Negative domain: 35<x<3+5 -3 - \sqrt{5} < x < -3 + \sqrt{5}
  • Positive domain: x<35 x < -3 - \sqrt{5} or x>3+5 x > -3 + \sqrt{5}

Upon reviewing the multiple choice options, the correct answer that corresponds to this solution is:

x < 0 : -3-\sqrt{5} < x < -3+\sqrt{5}

x>-3+\sqrt{5} or x > 0 : x < -3-\sqrt{5}

Answer

x < 0 : -3-\sqrt{5} < x < -3+\sqrt{5}

x>-3+\sqrt{5} or x > 0 : x < -3-\sqrt{5}