Find the positive and negative domains of the function below:
Find the positive and negative domains of the function below:
To find the positive and negative domains of the function , we analyze when is greater than and less than zero.
Step 1: Solve for the positive domain ( y > 0 ).
We need to solve the inequality:
-\left(x - 2.5\right)^2 + 0.5 > 0 .
Rearrange this to:
-\left(x - 2.5\right)^2 > -0.5 .
Remove the negative sign by multiplying by (which flips the inequality sign):
\left(x - 2.5\right)^2 < 0.5 .
Taking the square root of both sides gives:
|x - 2.5| < \sqrt{0.5} .
This implies:
-\sqrt{0.5} < x - 2.5 < \sqrt{0.5} .
Solve for :
2.5 - \sqrt{0.5} < x < 2.5 + \sqrt{0.5} .
Step 2: Solve for the negative domain ( y < 0 ).
From the inequality:
-\left(x - 2.5\right)^2 + 0.5 < 0 .
Rearrange to:
-\left(x - 2.5\right)^2 < -0.5 .
Again, multiply by :
\left(x - 2.5\right)^2 > 0.5 .
Taking the square root gives:
|x - 2.5| > \sqrt{0.5} .
This implies:
x - 2.5 < -\sqrt{0.5} or x - 2.5 > \sqrt{0.5} .
Solving gives:
x < 2.5 - \sqrt{0.5} or x > 2.5 + \sqrt{0.5} .
Recall , so:
The positive domain is: 2.5 - \frac{\sqrt{2}}{2} < x < 2.5 + \frac{\sqrt{2}}{2} .
The negative domain is: x < 2.5 - \frac{\sqrt{2}}{2} or x > 2.5 + \frac{\sqrt{2}}{2} .
Therefore, the correct answer based on the choices provided is:
x<0:2\frac{1}{2}-\frac{\sqrt{2}}{2} or x > 2\frac{1}{2} + \frac{\sqrt{2}}{2}
x > 0 : 2\frac{1}{2} - \frac{\sqrt{2}}{2} < x < 2\frac{1}{2} + \frac{\sqrt{2}}{2}
x<0:2\frac{1}{2}-\frac{\sqrt{2}}{2} or x > 2\frac{1}{2} + \frac{\sqrt{2}}{2}
x > 0 : 2\frac{1}{2} - \frac{\sqrt{2}}{2} < x < 2\frac{1}{2} + \frac{\sqrt{2}}{2}