Solve Triangle Equation: C + A = 2(A + B) with Equal Angles A and B

Question

Below is the triangle ABC.

C+A=2(A+B) ∢C+∢A=2(∢A+∢B)

A=B ∢A=∢B

Calculates the size of angle A ∢A .

AAACCCBBB

Video Solution

Step-by-Step Solution

To approach the problem, follow these steps:

  • Step 1: Establish and simplify the given equation.

  • Step 2: Use properties of triangle angles to form additional equations.

  • Step 3: Solve the equations to find A \angle A .

Step 1: We're given C+A=2(A+B) \angle C + \angle A = 2(\angle A + \angle B) .

Substitute B=A \angle B = \angle A :

C+A=2(A+A)=4A\angle C + \angle A = 2(\angle A + \angle A) = 4\angle A.

Step 2: Use the triangle angle sum property:

A+B+C=180\angle A + \angle B + \angle C = 180^\circ.

Since B=A \angle B = \angle A , we have:

A+A+C=180 \angle A + \angle A + \angle C = 180^\circ , simplifying to 2A+C=180 2\angle A + \angle C = 180^\circ .

Step 3: Solve the System:

  • From 2A+C=180 2\angle A + \angle C = 180^\circ , express C \angle C as:

  • C=1802A\angle C = 180^\circ - 2\angle A.

  • Substitute into the equation C+A=4A \angle C + \angle A = 4\angle A :

  • (1802A)+A=4A (180^\circ - 2\angle A) + \angle A = 4\angle A .

  • Simplify: 180A=4A 180^\circ - \angle A = 4\angle A .

  • Add A\angle A to both sides: 180=5A 180^\circ = 5\angle A .

  • Solving for A\angle A, we get: A=1805\angle A = \frac{180^\circ}{5}.

  • Thus, A=36\angle A = 36^\circ.

Answer

36°