The Distributive Property in the Case of Multiplication - Examples, Exercises and Solutions

Understanding The Distributive Property in the Case of Multiplication

Complete explanation with examples

The distributive property of multiplication allows us to break down the highest term of the exercise into a smaller number. This simplifies the multiplication operation and we can solve the exercise without the need to use a calculator.

Example of an exercise where the distributive property is applied with multiplications

Let's assume we have an exercise with a multiplication that is simple, but with large numbers, for example:
8×5328\times 532

Thanks to the distributive property, we can break it down into simpler exercises:

8×532=8×(500+30+2)8\times 532=8\times (500+30+2)

8×500=40008\times 500=4000

+

8×30=2408\times 30=240

+

8×2=168\times 2=16

=

4000+240+16=42564000+240+16=4256

A- The Distributive Property in the Case of Multiplication

Detailed explanation

Practice The Distributive Property in the Case of Multiplication

Test your knowledge with 22 quizzes

Solve the following division:

\( 93:3= \)

Examples with solutions for The Distributive Property in the Case of Multiplication

Step-by-step solutions included
Exercise #1

Solve the following exercise

?=24:12

Step-by-Step Solution

Apply the distributive property of division and proceed to split the number 24 into a sum of 12 and 12, which ultimately renders the division operation easier and allows us to solve the exercise without a calculator.

Note - it's best to choose to split the number based on knowledge of multiples. In this case of the number 12 because we need to divide by 12.

Reminder - The distributive property of division actually allows us to split the larger term in a division problem into a sum or difference of smaller numbers, which makes the division operation easier and allows us to solve the exercise without a calculator

We will use the formula of the distributive property

 (a+b):c=a:c+b:c 

24:12=(12+12):12 24:12=(12+12):12

(12+12):12=12:12+12:12 (12+12):12=12:12+12:12

12:12+12:12=1+1 12:12+12:12=1+1

1+1=2 1+1=2

Therefore the answer is section a - 2.

Answer:

2

Video Solution
Exercise #2

94+72= 94+72=

Step-by-Step Solution

In order to simplify the calculation , we first break down 94 and 72 into smaller and preferably round numbers.

We obtain the following exercise:

90+4+70+2= 90+4+70+2=

Using the associative property, we then rearrange the exercise to be more functional.

90+70+4+2= 90+70+4+2=

We solve the exercise in the following way, first the round numbers and then the small numbers.

90+70=160 90+70=160

4+2=6 4+2=6

Which results in the following exercise:

160+6=166 160+6=166

Answer:

166

Video Solution
Exercise #3

14070= 140-70=

Step-by-Step Solution

In order to simplify the resolution process, we begin by using the distributive property for 140:

100+4070= 100+40-70=

We then rearrange the exercise using the substitution property into a more practical form:

10070+40= 100-70+40=

Lastly we solve the exercise from left to right:

10070=30 100-70=30

30+40=70 30+40=70

Answer:

70

Video Solution
Exercise #4

133+30= 133+30=

Step-by-Step Solution

In order to solve the question, we first use the distributive property for 133:

(100+33)+30= (100+33)+30=

We then use the distributive property for 33:

100+30+3+30= 100+30+3+30=

We rearrange the exercise into a more practical form:

100+30+30+3= 100+30+30+3=

We solve the middle exercise:

30+30=60 30+30=60

Which results in the final exercise as seen below:

100+60+3=163 100+60+3=163

Answer:

163

Video Solution
Exercise #5

Solve the exercise:

84:4=

Step-by-Step Solution

There are several ways to solve the following exercise,

We will present two of them.

In both ways, we begin by decomposing the number 84 into smaller units; 80 and 4.

44=1 \frac{4}{4}=1

Subsequently we are left with only the 80.

 

Continuing on with the first method, we will then further decompose 80 into smaller units; 10×8 10\times8

We know that:84=2 \frac{8}{4}=2

And therefore, we are able to reduce the exercise as follows: 104×8 \frac{10}{4}\times8

Eventually we are left with2×10 2\times10

which is equal to 20

In the second method, we decompose 80 into the following smaller units:40+40 40+40

We know that: 404=10 \frac{40}{4}=10

And therefore: 40+404=804=20=10+10 \frac{40+40}{4}=\frac{80}{4}=20=10+10

which is also equal to 20

Now, let's remember the 1 from the first step and add it in to our above answer:

20+1=21 20+1=21

Thus we are left with the following solution:844=21 \frac{84}{4}=21

Answer:

21

Video Solution

More The Distributive Property in the Case of Multiplication Questions

Continue Your Math Journey

Practice by Question Type