Completing the square in a quadratic equation

🏆Practice completion of a square as a solution of a quadratic equation

Completing the square in a quadratic equation

The process of completing the square is a way to solve a quadratic equation. This procedure converts an equation written in the standard form of the quadratic function ax2+bx+cax^2+bx+c into an expression with a variable squared, as in the following example: (Xr)2w(X-r)^2-w where rr and ww are parameters.

Start practice

Test yourself on completion of a square as a solution of a quadratic equation!

einstein

Given the circle with the equation:

\( x^2-8ax+y^2+10ay=-5a^2 \)


and its center at point O in the second quadrant,

\( a\neq0 \)

Use the completing the square method to find the center of the circle and its radius using

\( a \)

Practice more now

Steps of the completing the square procedure -> combined in an example

Given the function X2+10x+9X^2+10x+9

  1. Let's observe the quadratic function and focus only and exclusively on ax2+bxax^2+bx.
    For now, we will ignore CC.
    In the example, we will focus on X2+10xX^2+10x
     
  2. Let's remember the formulas for shortcut multiplication and ask ourselves what expression we could place inside the parentheses squared, that is, what (ab)2(a-b)^2  or (a+b)2(a+b)^2 as appropriate, that gives us what appears in the pair we are focusing on ax2+bxax^2+bx

    In the example
    the convenient shortcut multiplication formula is: a2+2ab+b2=(a+b)2a^2+2ab+b^2=(a+b)^2

    Let's see what we can replace aa and bb with to obtain X2+10xX^2+10x?
    The answer is (X+5)2(X+5)^2
    we will open this expression according to the shortcut multiplication formula and obtain:  X2+10x+25 X^2+10x+25
     
  3. Notice that, the expression inside the parentheses also brings with it some number and not only the pair we are focusing on, therefore, we must neutralize it. If the added number is negative, we will add it to the equation to cancel it out. If the number is positive, we will subtract it from the equation and, in this way, it will be canceled out.

    Also, we will return to CC in the original function and also write it in the equation.
    In the example: 
     X2+8x+25 X^2+8x+25

    the number 2525 has been added. To cancel it out we will subtract 2525 (without adding) and we will not forget about CC   from the original equation 99.

    We will obtain:
     X2+8x25+9= X^2+8x-25+9=
  4. Let's replace the pair ax2+bxax^2+bx with the corresponding expression in parentheses squared that we have found and order the equation: we will complete the square.

In the example:
(X+5)225+9=(X+5)^2-25+9=
(X+5)216(X+5)^2-16

Now :
The steps to solve the quadratic equation after completing the square: let's set the equation to zero.

In the example: 
(X+5)216=0(X+5)^2-16=0

Let's move the independent variable to the second term.

In the example : 

(X+5)2=16(X+5)^2=16

We will write the independent variable as a number squared.
In the example:
(X+5)2=42(X+5)^2=4^2
Let's solve the equation and see how many possible solutions there are.

In the example : 
(X+5)2=42(X+5)^2=4^2

We will see that we have 2 2 solutions and solve:
Solution number one: 
X+5=4X+5=4
X=1X=-1

Solution two:
X+5=4X+5=-4
X=9X=-9

The results are:
X=1,9X=-1,-9


Completing the Square in a Quadratic Equation (Examples and Exercises with Solutions)

Exercise #1

Given the circle with the equation:

x28ax+y2+10ay=5a2 x^2-8ax+y^2+10ay=-5a^2


and its center at point O in the second quadrant,

a0 a\neq0

Use the completing the square method to find the center of the circle and its radius using

a a

Step-by-Step Solution

 Let's recall that the equation of a circle with its center at O(xo,yo) O(x_o,y_o) and its radius R R is:

(xxo)2+(yyo)2=R2 (x-x_o)^2+(y-y_o)^2=R^2 Now, let's now take a look at the equation for the given circle:

x28ax+y2+10ay=5a2 x^2-8ax+y^2+10ay=-5a^2 We will try rearrange this equation to match the circle equation, that is - we will ensure that on the left side there will be the sum of two squared binomial expressions, one for x and one for y.

We will do this using the "completing the square" method:

Let's recall the shortcut formula for squaring a binomial:

(c±d)2=c2±2cd+d2 (c\pm d)^2=c^2\pm2cd+d^2 We'll deal separately with the part of the equation related to x in the equation (underlined):

x28ax+y2+10ay=5a2 \underline{ x^2-8ax}+y^2+10ay=-5a^2

We'll isolate these two terms from the equation and deal with them separately.

We'll present these terms in a form similar to the form of the first two terms in the shortcut formula (we'll choose the subtraction form of the binomial squared formula since the term in the first power we are dealing with 8ax 8ax has a negative sign):

x28axc22cd+d2x22x4ac22cd+d2 \underline{ x^2-8ax} \textcolor{blue}{\leftrightarrow} \underline{ c^2-2cd+d^2 }\\ \downarrow\\ \underline{\textcolor{red}{x}^2\stackrel{\downarrow}{-2 }\cdot \textcolor{red}{x}\cdot \textcolor{green}{4a}} \textcolor{blue}{\leftrightarrow} \underline{ \textcolor{red}{c}^2\stackrel{\downarrow}{-2 }\textcolor{red}{c}\textcolor{green}{d}\hspace{2pt}\boxed{+\textcolor{green}{d}^2}} \\ Notice that compared to the shortcut formula (which is on the right side of the blue arrow in the previous calculation) we are actually making the comparison:

{xc4ad \begin{cases} x\textcolor{blue}{\leftrightarrow}c\\ 4a\textcolor{blue}{\leftrightarrow}d \end{cases} Therefore, if we want to get a squared binomial form from these two terms (underlined in the calculation), we will need to add the term(4</span><spanclass="katex">a)2 (4</span><span class="katex">a)^2 , but we don't want to change the value of the expression, and therefore - we will also subtract this term from the expression.

That is, we will add and subtract the term (or expression) we need to "complete" to the binomial squared form,

In the following calculation, the "trick" is highlighted (two lines under the term we added and subtracted from the expression),

Next - we'll put the expression in the squared binomial form the appropriate expression (highlighted with colors) and in the last stage we'll simplify the expression:

x22x4ax22x4a+(4a)2(4a)2x22x4a+(4a)216a2(x4a)216a2 x^2-2\cdot x\cdot 4a\\ x^2-2\cdot x\cdot4a\underline{\underline{+(4a)^2-(4a)^2}}\\ \textcolor{red}{x}^2-2\cdot \textcolor{red}{x}\cdot \textcolor{green}{4a}+(\textcolor{green}{4a})^2-16a^2\\ \downarrow\\ \boxed{ (\textcolor{red}{x}-\textcolor{green}{4a})^2-16a^2}\\ Let's summarize the steps we've taken so far for the expression with x.

We'll do this within the given equation:

x28ax+y2+10ay=5a2x22x4a+(4a)2(4a)2+y2+10ay=5a2(x4a)216a2+y2+10ay=5a2 x^2-8ax+y^2+10ay=-5a^2 \\ \textcolor{red}{x}^2-2\cdot \textcolor{red}{x}\cdot\textcolor{green}{4a}\underline{\underline{+\textcolor{green}{(4a)}^2-(4a)^2}}+y^2+10ay=-5a^2\\ \downarrow\\ (\textcolor{red}{x}-\textcolor{green}{4a})^2-16a^2+y^2+10ay=-5a^2\\ We'll continue and do the same thing for the expressions with y in the resulting equation:

(Now we'll choose the addition form of the squared binomial formula since the term in the first power we are dealing with 10ay 10ay has a positive sign)

(x4a)216a2+y2+10ay=5a2(x4a)216a2+y2+2y5a=5a2(x4a)216a2+y2+2y5a+(5a)2(5a)2=5a2(x4a)216a2+y2+2y5a+(5a)225a2=5a2(x4a)216a2+(y+5a)225a2=5a2(x4a)2+(y+5a)2=36a2 (x-4a)^2-16a^2+\underline{y^2+10ay}=-5a^2\\ \downarrow\\ (x-4a)^2-16a^2+\underline{y^2+2\cdot y \cdot 5a}=-5a^2\\ (x-4a)^2-16a^2+\underline{y^2+2\cdot y \cdot 5a\underline{\underline{+(5a)^2-(5a)^2}}}=-5a^2\\ \downarrow\\ (x-4a)^2-16a^2+\underline{\textcolor{red}{y}^2+2\cdot\textcolor{red}{ y}\cdot \textcolor{green}{5a}+\textcolor{green}{(5a)}^2-25a^2}=-5a^2\\ \downarrow\\ (x-4a)^2-16a^2+(\textcolor{red}{y}+\textcolor{green}{5a})^2-25a^2=-5a^2\\ \boxed{(x-4a)^2+(y+5a)^2=36a^2} In the last step, we move the free numbers to the second side and combine like terms.

Now that the given circle equation isin the form of the general circle equation mentioned earlier, we can easily extract both the center of the given circle and its radius:

(xxo)2+(yyo)2=R2(x4a)2+(y+5a)2=36a2(x4a)2+(y(5a))2=36a2 (x-\textcolor{purple}{x_o})^2+(y-\textcolor{orange}{y_o})^2=\underline{\underline{R^2}} \\ \updownarrow \\ (x-\textcolor{purple}{4a})^2+(y+\textcolor{orange}{5a})^2=\underline{\underline{36a^2}}\\ \downarrow\\ (x-\textcolor{purple}{4a})^2+(y\stackrel{\downarrow}{- }(-\textcolor{orange}{5a}))^2=\underline{\underline{36a^2}}\\ In the last step, we made sure to get the exact form of the general circle equation - that is, where only subtraction is performed within the squared expressions (emphasized with an arrow)

Therefore, we can conclude that the center of the circle is at:O(xo,yo)O(4a,5a) \boxed{O(x_o,y_o)\leftrightarrow O(4a,-5a)} and extract the radius of the circle by solving a simple equation:

R2=36a2/R=±6a R^2=36a^2\hspace{6pt}\text{/}\sqrt{\hspace{4pt}}\\ \rightarrow \boxed{R=\pm6a}

Remember that the radius of the circle, by its definition is the distance between any point on the diameter and the center of the circle. Since it is positive, we must disqualify one of the options we got for the radius.

To do this, we will use the remaining information we haven't used yet - which is that the center of the given circle O is in the second quadrant,

That is:

O(x_o,y_o)\leftrightarrow x_o<0,\hspace{4pt}y_o>0 (Or in words: the x-value of the circle's center is negative and the y-value of the circle's center is positive)

That is, it must be true that:

\begin{cases} x_o<0\rightarrow (x_o=4a)\rightarrow 4a<0\rightarrow\boxed{a<0}\\ y_o>0\rightarrow (y_o=-5a)\rightarrow -5a>0\rightarrow\boxed{a<0} \end{cases} We concluded that a<0 and since the radius of the circle is positive we conclude that necessarily:

R=6a \rightarrow \boxed{R=-6a} Let's summarize:

O(4a,5a),R=6a \boxed{O(4a,-5a), \hspace{4pt}R=-6a} Therefore, the correct answer is answer d. 

Answer

O(4a,5a),R=6a O(4a,-5a),\hspace{4pt}R=-6a

Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge
Start practice