Functions can be represented in several ways, each providing a unique perspective on the relationship between inputs and outputs. Here are the primary methods:
Master algebraic, graphical, tabular and verbal representations of functions with step-by-step practice problems. Build confidence with interactive exercises.
Functions can be represented in several ways, each providing a unique perspective on the relationship between inputs and outputs. Here are the primary methods:
Representation using an equation of and , such as , showing how the output depends on the input.
A visual representation on a coordinate plane, like using a graph, plotting on the and axis, where the function's behavior and trends (e.g., linear, quadratic) can be observed.
A table of values that pairs inputs () with corresponding outputs () for a quick reference of specific points.
A written explanation describing the relationship between variables, such as “The output is twice the input plus three.” Expressing the relationship between and using words.
Which of the following equations corresponds to the function represented in the graph?
Determine whether the following table represents a function
It is important to remember that a constant function describes a situation where as the X value increases, the function value (Y) remains constant.
In the table, we can observe that there is a constant change in X values, meaning an increase of 1, and a constant change in Y values, meaning an increase of 3
Therefore, according to the rule, the table describes a function.
Answer:
Yes
Determine whether the data in the following table represent a constant function
It is important to remember that a constant function describes a situation where as the X value increases, the function value (Y) remains constant.
In the table, we can observe that there is a constant change in X values, meaning an increase of 1, and a non-constant change in Y values - sometimes increasing by 1 and sometimes by 4
Therefore, according to the rule, the table does not describe a function
Answer:
No
Determine whether the following table represents a constant function:
It is important to remember that a constant function describes a situation where, as the X value increases, the Y value remains constant.
In the table, we can see that there is a constant change in the X values, specifically an increase of 2, while the Y value remains constant.
Therefore, the table does indeed describe a constant function.
Answer:
Yes, it does
Is the given graph a function?
It is important to remember that a function is an equation that assigns to each element in domain X one and only one element in range Y
Let's note that in the graph:
In other words, there are two values for the same number.
Therefore, the graph is not a function.
Answer:
No
Determine whether the given graph is a function?
It is important to remember that a function is an equation that assigns to each element in domain X one and only one element in range Y
We should note that for every X value found on the graph, there is one and only one corresponding Y value.
Therefore, the graph is indeed a function.
Answer:
Yes