Functions can be represented in several ways, each providing a unique perspective on the relationship between inputs and outputs. Here are the primary methods:
Master algebraic, graphical, tabular and verbal representations of functions with step-by-step practice problems. Build confidence with interactive exercises.
Functions can be represented in several ways, each providing a unique perspective on the relationship between inputs and outputs. Here are the primary methods:
Representation using an equation of and , such as , showing how the output depends on the input.
A visual representation on a coordinate plane, like using a graph, plotting on the and axis, where the function's behavior and trends (e.g., linear, quadratic) can be observed.
A table of values that pairs inputs () with corresponding outputs () for a quick reference of specific points.
A written explanation describing the relationship between variables, such as “The output is twice the input plus three.” Expressing the relationship between and using words.
Determine whether the following table represents a linear function
Is the given graph a function?
To determine if the graph is a function, we will use the Vertical Line Test.
The Vertical Line Test states that a graph represents a function if and only if no vertical line intersects the graph at more than one point.
Let's apply this test to the given graph, where a horizontal line is drawn. This line represents the function the graph should be verified against.
Upon inspection of the graph, we see that every vertical line intersects the graph at exactly one point.
This indicates that for every input (x-value), there is a unique output (y-value), fulfilling the criteria for the definition of a function.
Therefore, according to the Vertical Line Test, the given graph is indeed a function.
The correct choice is: Yes
Answer:
Yes
Is the given graph a function?
To determine whether the graph represents a function, we apply the Vertical Line Test. Here are the steps we follow:
Step 1: On evaluating the given graph carefully, there is a notable presence of a vertical line passing through multiple y-values. Specifically, the vertical line goes from to at .
Step 2: Since this vertical line at intersects the graph at an infinite number of points, it fails the Vertical Line Test.
Therefore, the graph does not represent a function. According to our analysis and the Vertical Line Test, the correct answer is No.
Answer:
No
Is the given graph a function?
To determine if the graph in question represents a function, we'll employ the Vertical Line Test. This test helps to ascertain whether each input value from the domain (x-values) is connected to a unique output value (y-values).
Thus, the given graph correctly characterizes a function.
Therefore, the solution to the problem is Yes.
Answer:
Yes
Is the given graph a function?
To determine if the given graph represents a function, we use the vertical line test: if any vertical line intersects the graph at more than one point, the graph is not a function.
Let's apply this test to the graph:
Upon examining the graph, we observe that there are several vertical lines that intersect the graph at multiple points, particularly in areas with loops or overlapping curves. This indicates that at those -values, there are multiple -values corresponding to them.
Since there exist such vertical lines, according to the vertical line test, the graph does not represent a function.
Thus, the solution to this problem is that the given graph is not a function.
Answer:
No
Is the given graph a function?
It is important to remember that a function is an equation that assigns to each element in domain X one and only one element in range Y
Let's note that in the graph:
In other words, there are two values for the same number.
Therefore, the graph is not a function.
Answer:
No