Solving Equations Using All Methods - Examples, Exercises and Solutions

Question Types:
Simplifying and Combining Like Terms: Combining like termsSimplifying and Combining Like Terms: Equations with variables on both sidesSimplifying and Combining Like Terms: Exercises with fractionsSimplifying and Combining Like Terms: One sided equationsSimplifying and Combining Like Terms: Opening parenthesesSimplifying and Combining Like Terms: Solving an equation using all techniquesSimplifying and Combining Like Terms: Solving an equation with fractionsSimplifying and Combining Like Terms: Using additional geometric shapesSimplifying and Combining Like Terms: Worded problemsSolving an Equation by Multiplication/ Division: Addition, subtraction, multiplication and divisionSolving an Equation by Multiplication/ Division: BinomialSolving an Equation by Multiplication/ Division: Combining like termsSolving an Equation by Multiplication/ Division: Decimal numbersSolving an Equation by Multiplication/ Division: Equations with variables on both sidesSolving an Equation by Multiplication/ Division: Exercises on Both Sides (of the Equation)Solving an Equation by Multiplication/ Division: Number of termsSolving an Equation by Multiplication/ Division: One sided equationsSolving an Equation by Multiplication/ Division: Rearranging EquationsSolving an Equation by Multiplication/ Division: Solving an equation using all techniquesSolving an Equation by Multiplication/ Division: Solving an equation with fractionsSolving an Equation by Multiplication/ Division: Using additional geometric shapesSolving an Equation by Multiplication/ Division: Using fractionsSolving an Equation by Multiplication/ Division: Worded problemsSolving Equations by using Addition/ Subtraction: BinomialSolving Equations by using Addition/ Subtraction: Complete the missing numberSolving Equations by using Addition/ Subtraction: Equations with variables on both sidesSolving Equations by using Addition/ Subtraction: Exercises on Both Sides (of the Equation)Solving Equations by using Addition/ Subtraction: MonomialSolving Equations by using Addition/ Subtraction: More than Two TermsSolving Equations by using Addition/ Subtraction: One sided equationsSolving Equations by using Addition/ Subtraction: Simplifying expressionsSolving Equations by using Addition/ Subtraction: Solving an equation by multiplying/dividing both sidesSolving Equations by using Addition/ Subtraction: Solving an equation using all techniquesSolving Equations by using Addition/ Subtraction: Solving an equation with fractionsSolving Equations by using Addition/ Subtraction: Test if the coefficient is different from 1Solving Equations by using Addition/ Subtraction: Using variablesSolving Equations by using Addition/ Subtraction: Worded problemsSolving Equations Using All Methods: Addition, subtraction, multiplication and divisionSolving Equations Using All Methods: BinomialSolving Equations Using All Methods: Combining like termsSolving Equations Using All Methods: Decimal numbersSolving Equations Using All Methods: Domain of definitionSolving Equations Using All Methods: Equations with variables on both sidesSolving Equations Using All Methods: Exercises with fractionsSolving Equations Using All Methods: MonomialSolving Equations Using All Methods: Number of termsSolving Equations Using All Methods: One sided equationsSolving Equations Using All Methods: Opening parenthesesSolving Equations Using All Methods: Rearranging EquationsSolving Equations Using All Methods: Using additional geometric shapesSolving Equations Using All Methods: Using fractionsSolving Equations Using All Methods: Worded problemsSolving Quadratic Equations using Factoring: Equations with variables on both sidesSolving Quadratic Equations using Factoring: One sided equationsSolving Quadratic Equations using Factoring: Solving an equation using all techniquesSolving Quadratic Equations using Factoring: Solving an equation with fractionsSolving Quadratic Equations using Factoring: Solving the problemSolving Quadratic Equations using Factoring: Worded problems

First-degree equation in one variable – solving by all methods

2x6=342x-6=34Variable

A first-degree equation is an equation where the highest power is 11 and there is only one variable 11.

Solving an Equation by Adding/Subtracting from Both Sides If the number is next to XX with a plus, we need to subtract it from both sides.
If the number is next to XX with a minus, we need to add it to both sides.

Solving an Equation by Multiplying/Dividing Both Sides We will need to multiply or divide both sides of the equations where there is a coefficient for XX.

Solving an Equation by Combining Like Terms Move all the XXs to the right side and all the numbers to the left side.

Solving an equation using the distributive property We will solve according to the distributive property
a(b+c)=ab+bca(b+c)=ab+bc

Suggested Topics to Practice in Advance

  1. Solving Equations by Adding or Subtracting the Same Number from Both Sides
  2. Solving Equations by Multiplying or Dividing Both Sides by the Same Number
  3. Solving Equations by Simplifying Like Terms
  4. Solving Equations Using the Distributive Property

Practice Solving Equations Using All Methods

Examples with solutions for Solving Equations Using All Methods

Exercise #1

4x:30=2 4x:30=2

Video Solution

Step-by-Step Solution

To solve the given equation 4x:30=2 4x:30 = 2 , we will follow these steps:

  • Step 1: Recognize that 4x:304x:30 implies 4x30=2\dfrac{4x}{30} = 2.

  • Step 2: Eliminate the fraction by multiplying both sides of the equation by 30.

  • Step 3: Simplify the equation to solve for xx.

Now, let's work through each step:

Step 1: The equation is written as 4x30=2\dfrac{4x}{30} = 2.

Step 2: Multiply both sides of the equation by 30 to eliminate the fraction:
30×4x30=2×30 30 \times \dfrac{4x}{30} = 2 \times 30

This simplifies to:
4x=60 4x = 60

Step 3: Solve for xx by dividing both sides by 4:
x=604=15 x = \dfrac{60}{4} = 15

Therefore, the solution to the problem is x=15 x = 15 .

Checking choices, the correct answer is:

x=15 x = 15

Answer

x=15 x=15

Exercise #2

Solve the equation

20:4x=5 20:4x=5

Video Solution

Step-by-Step Solution

To solve the exercise, we first rewrite the entire division as a fraction:

204x=5 \frac{20}{4x}=5

Actually, we didn't have to do this step, but it's more convenient for the rest of the process.

To get rid of the fraction, we multiply both sides of the equation by the denominator, 4X.

20=5*4X

20=20X

Now we can reduce both sides of the equation by 20 and we will arrive at the result of:

X=1

Answer

x=1 x=1

Exercise #3

5x=0 5x=0

Video Solution

Step-by-Step Solution

To solve the equation 5x=0 5x = 0 for x x , we will use the following steps:

  • Step 1: Identify that the equation is 5x=0 5x = 0 .
  • Step 2: To solve for x x , divide both sides of the equation by 5.

Let's perform the calculation as outlined in Step 2:

5x=0 5x = 0

Divide both sides by 5 to isolate x x :

x=05 x = \frac{0}{5}

Simplifying, this gives:

x=0 x = 0

Therefore, the solution to the equation 5x=0 5x = 0 is x=0 x = 0 .

The correct answer is option 4: x=0 x = 0 .

Answer

x=0 x=0

Exercise #4

5x=1 5x=1

What is the value of x?

Video Solution

Step-by-Step Solution

To solve the equation 5x=1 5x = 1 , we need to isolate x x . Here are the steps:

  • Step 1: Start with the equation 5x=1 5x = 1 .
  • Step 2: Divide both sides of the equation by the coefficient of x x , which is 5, to isolate x x . This gives us:
  • 5x5=15\frac{5x}{5} = \frac{1}{5}
  • Step 3: Simplify the left side:
  • 5x5=x\frac{5x}{5} = x
  • Step 4: Write the simplified equation:
  • x=15x = \frac{1}{5}

    Therefore, the solution to the equation 5x=1 5x = 1 is x=15 x = \frac{1}{5} .

The correct answer choice is:

x=15 x = \frac{1}{5}

Answer

x=15 x=\frac{1}{5}

Exercise #5

Find the value of the parameter X:

x+5=8 x+5=8

Video Solution

Step-by-Step Solution

To solve the equation x+5=8x + 5 = 8, follow these steps:

  • Step 1: Start with the original equation:
    x+5=8x + 5 = 8.
  • Step 2: Subtract 5 from both sides of the equation to isolate xx:
    x+55=85x + 5 - 5 = 8 - 5.
  • Step 3: Simplify both sides:
    x=3x = 3.

Therefore, the solution to the equation is x=3x = 3.

The correct answer choice is: :

3

Answer

3

Exercise #6

Solve for X:

3+x=4 3+x=4

Video Solution

Step-by-Step Solution

To solve this problem, we will follow these steps:

  • Step 1: Identify the given equation 3+x=4 3 + x = 4 .
  • Step 2: Use subtraction to isolate the variable x x .

Now, let's work through these steps:
Step 1: We have the equation: 3+x=4 3 + x = 4 .
Step 2: Subtract 3 from both sides of the equation to isolate x x :

3+x3=43 3 + x - 3 = 4 - 3

This simplifies to:

x=1 x = 1

Therefore, the solution to the equation is x=1 x = 1 .

Answer

1

Exercise #7

Solve for X:

5x=4 5-x=4

Video Solution

Step-by-Step Solution

To solve the equation 5x=45 - x = 4, we aim to isolate xx on one side of the equation.

We start by considering the equation:
5x=45 - x = 4

Step 1: Eliminate 5 from the left side to isolate terms involving xx. To do this, subtract 5 from both sides of the equation:

(5x)5=45(5 - x) - 5 = 4 - 5

Step 2: Simplify both sides:

x=1-x = -1

Step 3: To solve for xx, multiply or divide both sides by 1-1 to change the sign of xx:

1x=11-1 \cdot -x = -1 \cdot -1

This simplifies to:

x=1x = 1

Therefore, the solution to the equation 5x=45 - x = 4 is x=1x = 1.

The correct answer is x=1x = 1.

Answer

1

Exercise #8

Solve for X:

8x=5 -8-x=-5

Video Solution

Step-by-Step Solution

To solve the equation 8x=5 -8 - x = -5 , we'll isolate the variable x x by performing algebraic operations:

Step 1: Add 8 to both sides of the equation to eliminate the 8-8:

8x+8=5+8 -8 - x + 8 = -5 + 8

This simplifies to:

x=3 -x = 3

Step 2: To solve for x x , we need to change the sign of x x . Multiply both sides by 1-1:

x=3 x = -3

Therefore, the solution to the equation is 3\boxed{-3}.

Answer

3 -3

Exercise #9

Find the value of the parameter X

8x=5 -8-x=5

Video Solution

Step-by-Step Solution

To solve the given linear equation 8x=5 -8 - x = 5 , we will follow these steps:

  • Add 8 to both sides of the equation to isolate the term involving x x .
  • Subtract x x from both sides to further simplify; however, applying approach 1 directly cancels this step.
  • Multiply both sides by -1 to solve for x x .

First, let's add 8 to both sides of the equation:

8x+8=5+8 -8 - x + 8 = 5 + 8

This simplifies to:

x=13 -x = 13

To find x x , multiply both sides of the equation by -1:

x=13 x = -13

Therefore, the solution to the equation is x=13 x = -13 .

Answer

13 -13

Exercise #10

Solve for X:

5+x=3 -5+x=-3

Video Solution

Step-by-Step Solution

To solve the equation 5+x=3-5 + x = -3, we can follow these steps:

  • Step 1: We want to isolate x x on one side of the equation. Currently, it is subtracted by 5, so we'll eliminate the -5 by performing the operation of addition.
  • Step 2: Add 5 to both sides of the equation to cancel out the -5:
    5+x+5=3+5-5 + x + 5 = -3 + 5
  • Step 3: Simplify both sides:
    x=3+5x = -3 + 5
  • Step 4: Perform the arithmetic operation on the right side:
    x=2x = 2

Therefore, the solution to the problem is x=2 x = 2 .

Answer

2 2

Exercise #11

Solve for X:

5x=25 5x=25

Video Solution

Step-by-Step Solution

To solve the equation 5x=255x = 25, we will isolate xx using division:

  • Divide both sides of the equation by 5:
5x5=255 \frac{5x}{5} = \frac{25}{5}

After performing the division, we get:

x=5 x = 5

Thus, the solution to the equation is x=5 x = 5 .

Answer

5

Exercise #12

Solve for X:

6x=72 6x=72

Video Solution

Step-by-Step Solution

To solve for xx in the equation 6x=726x = 72, follow these steps:

Step 1: Identify the equation and the coefficient of xx.
The given equation is 6x=726x = 72, where the coefficient of xx is 6.

Step 2: Isolate xx by dividing both sides of the equation by the coefficient (6).
Perform the division: x=726x = \frac{72}{6}.

Step 3: Simplify the result.
Calculating 726\frac{72}{6}, we get x=12x = 12.

Therefore, the solution to the equation is x=12x = 12.

Answer

12

Exercise #13

Solve for X:

13x=9 \frac{1}{3}x=9

Video Solution

Step-by-Step Solution

To solve the equation 13x=9\frac{1}{3}x = 9, we need to isolate the variable xx. To accomplish this, we can multiply both sides of the equation by 3, the reciprocal of 13\frac{1}{3}.

Step-by-step solution:

  • Step 1: Multiply both sides by 3.
    (3×13)x=3×9\left(3 \times \frac{1}{3}\right)x = 3 \times 9
  • Step 2: Simplify the left side.
    This gives us 1x=271x = 27, since (3×13)=1\left(3 \times \frac{1}{3}\right) = 1.
  • Step 3: Conclude that x=27x = 27.

Therefore, the solution to the equation is x=27 x = 27 . This matches choice number 1 from the provided options.

Answer

27

Exercise #14

Solve for X:

15x=12 \frac{1}{5}x=12

Video Solution

Step-by-Step Solution

To solve this problem, we will follow the steps outlined below:

  • Step 1: Recognize that 15x=12 \frac{1}{5}x = 12 gives us x x multiplied by 15 \frac{1}{5} .
  • Step 2: Multiply both sides of the equation by 5 to eliminate the fraction.
  • Step 3: Simplify the resulting equation to solve for x x .

Let's proceed step-by-step:

Step 1: We have the equation 15x=12 \frac{1}{5}x = 12 .

Step 2: To isolate x x , multiply both sides of the equation by 5:

5×15x=5×12 5 \times \frac{1}{5}x = 5 \times 12

Step 3: Simplify both sides:

  • The left side simplifies to x x because 5×15=1 5 \times \frac{1}{5} = 1 , so x x is left alone.
  • The right side becomes 60 60 , since 5×12=60 5 \times 12 = 60 .

Therefore, the value of x x is 60 60 .

Therefore, the solution to the problem is x=60 x = 60 .

Answer

60 60

Exercise #15

Solve for X:

x+3=5 x+3=5

Video Solution

Step-by-Step Solution

To solve the equation x+3=5 x + 3 = 5 , we will follow these steps:

  • Subtract 3 from both sides of the equation to isolate x x .
  • On the left, x+33=x x + 3 - 3 = x remains.
  • On the right, 53=2 5 - 3 = 2 .
  • This gives us the equation: x=2 x = 2 .

Therefore, the solution to the equation is x=2 x = 2 .

Answer

2 2

More Questions