Solving Equations Using the Distributive Property

🏆Practice solving quadratic equations using factoring

Solving an equation using the distributive property is related to the need to open the parentheses as the first step to then be able to simplify similar members. When an equation contains one or more pairs of parentheses, we must start by opening them all and then proceed to the next phase. 

Below, we provide you with some examples where this method is applied.

2(X+3)=8 2\left(X+3\right)=8

In this equation, we can clearly see some parentheses. To start, we must open them (that is, apply the distributive property) and then we can proceed with the following phases of the exercise.

2X+6=8 2X+6=8

2X=2 2X=2

X=1 X=1

The result of the equation is 1 1 .

Solving equations using the distributive property


Start practice

Test yourself on solving quadratic equations using factoring!

Solve for x:

\( 2(4-x)=8 \)

Practice more now

Another example

5(X+2)=3(X+4) 5\left(X+2\right)=3\left(X+4\right)

In this equation, we clearly see that there are two pairs of parentheses, one on each side. To begin, we must open them (that is, apply the distributive property) and then we can proceed with the following phases of the exercise.

5X+10=3X+12 5X+10=3X+12

2X=2 2X=2

X=1 X=1

The result of the equation is 1 1 .


If this article interested you, you might also be interested in the following articles

Examples and exercises with solutions for solving equations using the distributive property

Exercise #1

Determine the value of x x :

2(x+4)+8=0 2(x+4)+8=0

Video Solution

Step-by-Step Solution

Let's first expand the parentheses using the formula:

a(x+b)=ax+ab a(x+b)=ax+ab

(2×x)+(2×4)+8=0 (2\times x)+(2\times4)+8=0

2x+8+8=0 2x+8+8=0

Next, we will substitute in our terms accordingly:

2x+16=0 2x+16=0

Then, we will move the 16 to the left-hand side, keeping the appropriate sign:

2x=16 2x=-16

Finally, we divide both sides by 2:

2x2=162 \frac{2x}{2}=-\frac{16}{2}

x=8 x=-8

Answer

x=8 x=-8

Exercise #2

3(a+1)3=0 3(a+1)-3=0

Video Solution

Step-by-Step Solution

Let's proceed to solve the linear equation 3(a+1)3=0 3(a+1) - 3 = 0 :

Step 1: Distribute the 3 in the expression 3(a+1) 3(a+1) .

We get:
3a+313=0 3 \cdot a + 3 \cdot 1 - 3 = 0

This simplifies to:
3a+33=0 3a + 3 - 3 = 0

Step 2: Simplify the expression by combining like terms.

We simplify this to:
3a+0=0 3a + 0 = 0 or simply 3a=0 3a = 0

Step 3: Isolate a a by dividing both sides by 3.

3a3=03\frac{3a}{3} = \frac{0}{3}

Thus,
a=0 a = 0

Therefore, the solution to the problem is a=0 a = 0 .

The correct choice is the option corresponding to a=0 a = 0 .

Answer

a=0 a=0

Exercise #3

Solve for x:

7(2x+5)=77 7(-2x+5)=77

Video Solution

Step-by-Step Solution

To open parentheses we will use the formula:

a(x+b)=ax+ab a(x+b)=ax+ab

(7×2x)+(7×5)=77 (7\times-2x)+(7\times5)=77

We multiply accordingly

14x+35=77 -14x+35=77

We will move the 35 to the right section and change the sign accordingly:

14x=7735 -14x=77-35

We solve the subtraction exercise on the right side and we will obtain:

14x=42 -14x=42

We divide both sections by -14

14x14=4214 \frac{-14x}{-14}=\frac{42}{-14}

x=3 x=-3

Answer

-3

Exercise #4

Solve for y:

2(4+y)y=0 -2(-4+y)-y=0

Video Solution

Step-by-Step Solution

To solve the equation 2(4+y)y=0-2(-4 + y) - y = 0, we will follow these steps:

  • Step 1: Distribute 2 -2 inside the parenthesis.
  • Step 2: Simplify and combine like terms.
  • Step 3: Solve the equation for yy.

Let's proceed with the solution:

Step 1: Distribute 2-2 in the expression 2(4+y)-2(-4 + y). This will transform the expression as follows:

2(4+y)=2×4+(2)×y=82y-2(-4 + y) = -2 \times -4 + (-2) \times y = 8 - 2y.

After distributing, the equation becomes:

82yy=08 - 2y - y = 0.

Step 2: Combine like terms. Notice that 2yy-2y - y is equivalent to 3y-3y:

83y=08 - 3y = 0.

Step 3: Solve for yy. First, isolate the term with yy by subtracting 8 from both sides:

3y=8-3y = -8.

Next, divide both sides by 3-3 to find yy:

y=83=83y = \frac{-8}{-3} = \frac{8}{3}.

Thus, the solution for yy is 83\frac{8}{3}, which can be written as a mixed number:

y=223y = 2\frac{2}{3}.

Therefore, the solution to the problem is y=223y = 2\frac{2}{3}.

Answer

y=223 y=2\frac{2}{3}

Exercise #5

5(3b1)=0 5-(3b-1)=0

Video Solution

Step-by-Step Solution

To solve the given linear equation 5(3b1)=0 5 - (3b - 1) = 0 , follow these steps:

  • Step 1: Simplify the equation.
    Start by distributing the negative sign through the parentheses:
    53b+1=0 5 - 3b + 1 = 0
  • Step 2: Combine like terms.
    Combine the constant terms on the left side:
    63b=0 6 - 3b = 0
  • Step 3: Isolate the variable b b .
    Subtract 6 from both sides of the equation to isolate the term with b b :
    3b=6-3b = -6
  • Step 4: Solve for b b .
    Divide both sides by -3 to solve for b b :
    b=63=2 b = \frac{-6}{-3} = 2

Therefore, the solution to the equation is b=2 b = 2 .

Answer

b=2 b=2

Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge
Start practice