To subtract fractions, we must find the common denominator by simplifying, expanding, or multiplying the denominators.
Then, we only need to subtract the numerators to get the result.
To subtract fractions, we must find the common denominator by simplifying, expanding, or multiplying the denominators.
Then, we only need to subtract the numerators to get the result.
Solve the following exercise:
\( \frac{7}{5}-\frac{4}{5}=\text{?} \)
In this article, we will learn how to subtract fractions in a simple and quick way.
By the way, subtracting fractions is very similar to adding fractions, therefore, if you know how to add them, you will know how to subtract them without any problem.
Shall we start?
The first step to solving fraction subtractions is to find the common denominator.
This way, we will have two fractions with the same denominator.
We will do this by simplifying, expanding, or multiplying the denominators.
After finding the common denominator, ensuring that both fractions have the same denominator, we will move on to the second step of the resolution.
The second step to solve a subtraction of fractions is to subtract the numerators.
We will encounter different cases of subtractions that we will study below:
Sometimes, we will have exercises in which it will be enough to carry out a single operation on a single fraction to achieve a common denominator.
Upon observing these denominators, we will immediately realize that, if we multiply the denominator by , we will reach the denominator .
This way, we will reach the common denominator and will be able to solve the exercise easily.
Observe - When multiplying the denominator to transform it into a common denominator, we must also multiply the numerator by the same number so that the value of the fraction does not change.
We will do this by multiplying by and we will obtain:
Now let's move to the second step and subtract the numerators.
Attention โ We do not subtract the denominators.
When we obtain an identical common denominator only the numerators are subtracted and, from now on, the denominator is written only once.
We subtract and leave the denominator only once.
If we wish, we can simplify the result and write it this way Another exercise:
Solution:
We will realize that, if we multiply by we will get this will be the common denominator.
We will obtain:
Let's subtract the numerators and we will get:
Solve the following exercise:
\( \frac{8}{5}-\frac{4}{5}=\text{?} \)
Solve the following exercise:
\( \frac{3}{9}-\frac{1}{9}=\text{?} \)
Solve the following exercise:
\( \frac{3}{5}-\frac{2}{5}=\text{?} \)
Sometimes we will come across exercises in which it will not be enough to expand a single fraction to obtain the common denominator, but rather, we must intervene in both fractions.
In such a case, simply, we multiply the first fraction by the denominator of the second and the second fraction by the denominator of the first.
Let's multiply the denominators:
We will multiply by (the denominator of the second fraction) and ย by (the denominator of the first fraction).
We will obtain:
Let's subtract the numerators and we will arrive at the solution:
Tip - This method is technical and does not require us to think about how to find the common denominator.
Therefore, we recommend using it in all fraction subtraction exercises.
In case there were in the exercise fractions with different denominators, we will first find the common denominator for of them (the simplest ones), then we will find the common denominator between the obtained one and the third given fraction.
Let's see an example and you will understand how simple this is:
Let's look at the denominators and ask ourselves - Among the three denominators, which is it easier to find a common denominator for?
The answer is and , since is the common denominator for both.
Therefore, we will multiply by and obtain:
Now we can subtract the numerators that already have a common denominator to arrive at a clearer and more orderly exercise (this step is not mandatory, but it will help us later):
Now we just need to find the common denominator between , the new denominator we found, and the third denominator of the exercise.
We will do it with the method of multiplying denominators and obtain:
Let's subtract the numerators and we will obtain:
Solve the following exercise:
In this problem, , we are tasked with subtracting two fractions with the same denominator.
Steps to solve the fraction problem:
Therefore, the solution to the problem is .
Solve the following exercise:
Let's solve the problem .
First, it's important to note that we're dealing with fractions that have the same denominator. This allows us to subtract the numerators directly while keeping the denominator unchanged.
Here are the steps we'll follow:
Now let's proceed with the calculation:
Step 2: Subtract the numerators: .
Step 3: Since the denominators are the same, the new denominator remains .
Step 4: Combine the results: This gives us the fraction .
Therefore, the solution to the problem is .
Solve the following exercise:
Let's solve the subtraction of two fractions:
Step 1: Identify the fractions given:
The fractions are and , both having a common denominator of 5.
Step 2: Subtract the numerators while keeping the denominator the same:
The numerator result is .
Step 3: Retain the common denominator:
Thus, the result of the subtraction is .
Therefore, the solution to the problem is .
Solve the following exercise:
The problem requires us to find the result of subtracting two fractions with the same denominator: .
To solve this problem, weโll follow these steps:
Let's work through each step:
Step 1: Observe that and both have a denominator of 7.
Step 2: Subtract the numerators: .
Step 3: Place the result over the original denominator: .
Therefore, the solution to the problem is .
Solve the following exercise:
The task is to perform a simple subtraction of fractions with like denominators. Here's how we solve it:
Initially, we have the fractions and . Both fractions have the same denominator, which is 6.
The fraction is already in its simplest form. Therefore, the result of subtracting from is .
The correct answer among the given choices is . This corresponds to choice number 2 in the list of options provided.
Therefore, the solution to the problem is .
Solve the following exercise:
\( \frac{3}{3}-\frac{1}{3}=\text{?} \)
Solve the following exercise:
\( \frac{6}{5}-\frac{4}{5}=\text{?} \)
Solve the following exercise:
\( \frac{2}{4}-\frac{1}{4}=\text{?} \)