Parts of a Triangle Practice Problems & Worksheets

Master triangle terminology with interactive practice on heights, medians, angle bisectors, and perpendicular bisectors. Build geometry skills step-by-step.

📚What You'll Master in Triangle Parts Practice
  • Identify and draw triangle heights from vertices to opposite sides
  • Locate medians that divide triangle sides into equal segments
  • Construct angle bisectors that create equal angles at vertices
  • Draw perpendicular bisectors from midpoints of triangle sides
  • Find midsegments connecting midpoints of two triangle sides
  • Distinguish between different types of triangle lines and their properties

Understanding Parts of a Triangle

Complete explanation with examples

Terms used in triangle calculations

  • Line

A line is a general term for straight lines (hence its name) that extend from a specific point on the triangle.

  • Height

Height is a line that extends from a specific vertex and reaches perpendicularly to the opposite side, creating a right angle. The height is marked with the letter h (from the word height).

  • Median

The median is also a line extending from a specific vertex to the opposite side, but it reaches exactly the middle of the opposite side and divides it into two equal parts.

  • Angle Bisector

An angle bisector is a line that extends from a specific vertex and actually divides the vertex into two equal angles.

  • Perpendicular Bisector

A perpendicular bisector is a line that extends from the middle of a side perpendicular to it.

  • Midsegment

A midsegment is a line that connects the midpoints of two sides and is parallel to the third side, with its length being half of it.

  • Opposite Side

An opposite side is the side that is located opposite to a specific vertex and does not pass through it.

Diagram of a triangle ABC illustrating key geometric concepts: height (H) in green, median in blue, angle bisector in red, perpendicular bisector from CB in orange, midsegment in purple, and the side opposite to vertex A highlighted in orange. Labels are color-coded for clarity.

Detailed explanation

Practice Parts of a Triangle

Test your knowledge with 36 quizzes

In an isosceles triangle, the angle between ? and ? is the "base angle".

Examples with solutions for Parts of a Triangle

Step-by-step solutions included
Exercise #1

Is DE side in one of the triangles?
AAABBBCCCDDDEEE

Step-by-Step Solution

Since line segment DE does not correspond to a full side of any of the triangles present within the given geometry, we conclude that the statement “DE is a side in one of the triangles” is Not true.

Answer:

Not true

Video Solution
Exercise #2

The triangle ABC is shown below.

To which side(s) are the median and the altitude drawn?

AAABBBCCCDDDEEEFFF

Step-by-Step Solution

To solve the problem of identifying to which side of triangle ABC ABC the median and the altitude are drawn, let's analyze the diagram given for triangle ABC ABC .

  • We acknowledge that a median is a line segment drawn from a vertex to the midpoint of the opposite side. An altitude is a line segment drawn from a vertex perpendicular to the opposite side.
  • Upon reviewing the diagram of triangle ABC ABC , line segment AD AD is a reference term. It appears to meet point C C in the middle, suggesting it's a median, but it also forms right angles suggesting it is an altitude.
  • Given the placement and orientation of AD AD , it is perpendicular to line BC BC (the opposite base for the median from A A ). Therefore, this line is both the median and the altitude to side BC BC .

Thus, the side to which both the median and the altitude are drawn is BC.

Therefore, the correct answer to the problem is the side BC BC , corresponding with choice Option 2: BC \text{Option 2: BC} .

Answer:

BC

Exercise #3

Look at triangle ABC below.

What is the median of the triangle and to which side is it drawn?

AAABBBCCCDDDEEE

Step-by-Step Solution

A median of a triangle is a line segment that connects a vertex to the midpoint of the opposite side. In triangle ABC \triangle ABC , we need to identify such a median from the diagram provided.

Step 1: Observe the diagram to identify the midpoint of each side.

Step 2: It is given that point E E is located on side AC AC . If E E is the midpoint of AC AC , then any line from a vertex to point E E would be a median.

Step 3: Check line segment BE BE . This line runs from vertex B B to point E E .

Step 4: Since E E is labeled as the midpoint of AC AC , line BE BE is the median of ABC \triangle ABC drawn to side AC AC .

Therefore, the median of the triangle is BE BE for AC AC .

Answer:

BE for AC

Exercise #4

Look at triangle ABC below.

Which is the median?

αααAAABBBCCCDDDEEE

Step-by-Step Solution

To solve this problem, we must identify which line segment in triangle ABC is the median.

First, review the definition: a median in a triangle connects a vertex to the midpoint of the opposite side. Now, in triangle ABC:

  • Point A represents the vertex.
  • Point E lies on line segment AB.
  • Line segment EC needs to be checked to see if it connects vertex E to point C.

From the diagram, it appears that E is indeed the midpoint of side AB. Thus, line segment EC connects vertex C to this midpoint.

This fits the definition of a median, verifying that EC is the median line segment in triangle ABC.

Therefore, the solution to the problem is: EC \text{EC} .

Answer:

EC

Exercise #5

Look at the triangle ABC below.

AD=12AB AD=\frac{1}{2}AB

BE=12EC BE=\frac{1}{2}EC

What is the median in the triangle?

AAABBBCCCEEEDDD

Step-by-Step Solution

A median in a triangle is a line segment connecting a vertex to the midpoint of the opposite side. Here, we need to find such a segment in triangle ABC \triangle ABC .

Let's analyze the given conditions:

  • AD=12AB AD = \frac{1}{2}AB : Point D D is the midpoint of AB AB .
  • BE=12EC BE = \frac{1}{2}EC : Point E E is the midpoint of EC EC .

Given that D D is the midpoint of AB AB , if we consider the line segment DC DC , it starts from vertex D D and ends at C C , passing through the midpoint of AB AB (which is D D ), fulfilling the condition for a median.

Therefore, the line segment DC DC is the median from vertex A A to side BC BC .

In summary, the correct answer is the segment DC DC .

Answer:

DC

Frequently Asked Questions

What is the difference between a height and a median in a triangle?

+
A height (altitude) is a line from a vertex perpendicular to the opposite side, forming a 90° angle. A median is a line from a vertex to the midpoint of the opposite side, dividing that side into two equal parts. The height focuses on perpendicularity, while the median focuses on bisecting the opposite side.

How do you identify the opposite side of a triangle vertex?

+
The opposite side is the side that doesn't touch the vertex you're looking at. For example, in triangle ABC, the opposite side to vertex A is side BC. The opposite side is always across from the vertex, never connected to it.

What makes an angle bisector different from other triangle lines?

+
An angle bisector divides an angle at a vertex into two equal smaller angles. Unlike heights or medians that go to the opposite side, angle bisectors focus on splitting the angle itself. If angle A is 60°, its angle bisector creates two 30° angles.

How long is a midsegment compared to the third side of a triangle?

+
A midsegment is always exactly half the length of the third side (the side it's parallel to). This is the Triangle Midsegment Theorem. For example, if the third side is 10 units long, the midsegment will be 5 units long.

Where does a perpendicular bisector start in a triangle?

+
A perpendicular bisector starts from the midpoint of any triangle side and extends perpendicular (at 90°) to that side. It doesn't originate from a vertex like heights, medians, or angle bisectors do. Instead, it bisects the side itself.

Can a triangle have multiple heights, medians, and angle bisectors?

+
Yes! Every triangle has exactly three of each: three heights (one from each vertex), three medians (one from each vertex), and three angle bisectors (one for each angle). Each serves a different geometric purpose in triangle analysis.

What tools do I need to draw triangle parts accurately?

+
You'll need: 1) A ruler for measuring and drawing straight lines, 2) A protractor for measuring angles and creating perpendicular lines, 3) A compass for finding midpoints and creating equal segments. These tools help ensure your triangle constructions are precise.

Why are triangle parts important in geometry problems?

+
Triangle parts help solve area calculations, prove congruence, find missing measurements, and understand triangle properties. Heights are used in area formulas, medians help locate centroids, and angle bisectors are crucial for angle relationships and triangle similarity problems.

More Parts of a Triangle Questions

Continue Your Math Journey

Practice by Question Type