An obtuse triangle is a triangle that has one obtuse angle (greater than degrees and less than degrees) and two acute angles (each of which is less than degrees). The sum of all three angles together is degrees.
Master obtuse triangles with interactive practice problems. Learn to identify obtuse angles, calculate missing angles, and solve triangle classification exercises step-by-step.
An obtuse triangle is a triangle that has one obtuse angle (greater than degrees and less than degrees) and two acute angles (each of which is less than degrees). The sum of all three angles together is degrees.
Given the values of the sides of a triangle, is it a triangle with different sides?
Is the triangle in the drawing an acute-angled triangle?
An acute-angled triangle is defined as a triangle where all three interior angles are less than .
In examining the visual depiction of the triangle provided in the problem, we need to see if it appears to satisfy this property. The assessment relies on observing the triangle's structure shown in the drawing and noting any geometric indications suggesting angle types.
Given the information from the drawing, if all angles seem to satisfy the condition of being less than , then by definition, the triangle is an acute-angled triangle.
Conclusively, the answer to whether the triangle is acute-angled based on provided visual assessment and inherent assumptions in its illustration is: Yes.
Answer:
Yes
In an isosceles triangle, the angle between ? and ? is the "base angle".
An isosceles triangle is one that has at least two sides of equal length. The angles opposite these two sides are known as the "base angles."
The side that is not equal to the other two is referred to as the "base" of the triangle. Thus, the "base angles" are the angles between each of the sides that are equal in length and the base.
Therefore, when we specify the angle in terms of its location or position, it is the angle between a "side" and the "base." This leads to the conclusion that the angle between the side and the base is the "base angle."
Therefore, the correct choice is Side, base.
Answer:
Side, base.
Given the values of the sides of a triangle, is it a triangle with different sides?
As is known, a scalene triangle is a triangle in which each side has a different length.
According to the given information, this is indeed a triangle where each side has a different length.
Answer:
Yes
Is the triangle in the drawing a right triangle?
Due to the presence of the 90 degree angle symbol we can determine that this is indeed a right-angled triangle.
Answer:
Yes
In an isosceles triangle, what are each of the two equal sides called ?
In an isosceles triangle, there are three sides: two sides of equal length and one distinct side. Our task is to identify what the equal sides are called.
To address this, let's review the basic properties of an isosceles triangle:
Therefore, each of the two equal sides in an isosceles triangle is called a "leg."
In our problem, we confirm that the correct terminology for these two equal sides is indeed "legs," distinguishing them from the "base," which is the unequal side. This aligns with both the typical definitions and properties of an isosceles triangle.
Thus, the equal sides in an isosceles triangle are known as legs.
Answer:
Legs