Obtuse Triangle Practice Problems & Exercises Online

Master obtuse triangles with interactive practice problems. Learn to identify obtuse angles, calculate missing angles, and solve triangle classification exercises step-by-step.

📚What You'll Master in Obtuse Triangle Practice
  • Identify obtuse triangles by recognizing angles greater than 90 degrees
  • Calculate missing obtuse angles using the 180-degree triangle angle sum
  • Compare angle sizes in obtuse triangles to determine relationships
  • Solve algebraic equations to find unknown obtuse angle measurements
  • Classify triangles as obtuse, acute, or right using the Pythagorean theorem
  • Apply obtuse triangle properties to solve real-world geometry problems

Understanding Obtuse Triangle

Complete explanation with examples

Obtuse Triangle Definition

An obtuse triangle is a triangle that has one obtuse angle (greater than 90° 90° degrees and less than 180° 180° degrees) and two acute angles (each of which is less than 90° 90° degrees). The sum of all three angles together is 180° 180° degrees.

Detailed explanation

Practice Obtuse Triangle

Test your knowledge with 20 quizzes

What kind of triangle is given in the drawing?

999555999AAABBBCCC

Examples with solutions for Obtuse Triangle

Step-by-step solutions included
Exercise #1

Calculate the size of angle X given that the triangle is equilateral.

XXXAAABBBCCC

Step-by-Step Solution

Remember that the sum of angles in a triangle is equal to 180.

In an equilateral triangle, all sides and all angles are equal to each other.

Therefore, we will calculate as follows:

x+x+x=180 x+x+x=180

3x=180 3x=180

We divide both sides by 3:

x=60 x=60

Answer:

60

Video Solution
Exercise #2

What is the size of each angle in an equilateral triangle?

AAACCCBBB

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify that an equilateral triangle has all sides of equal length, which implies its angles are also equal.
  • Step 2: Utilize the property that the sum of angles in any triangle is 180180^\circ.
  • Step 3: Since each angle is equal in an equilateral triangle, divide the total sum of 180180^\circ by 3.

Now, let's work through each step:
Step 1: In an equilateral triangle, all angles are equal in size.
Step 2: The sum of angles in any triangle is always 180180^\circ.
Step 3: Divide 180180^\circ by 3.

Calculating 180÷3=60180^\circ \div 3 = 60^\circ.

Therefore, the size of each angle in an equilateral triangle is 6060^\circ.

Answer:

60

Video Solution
Exercise #3

Which kind of triangle is given in the drawing?

666666666AAABBBCCC

Step-by-Step Solution

As we know that sides AB, BC, and CA are all equal to 6,

All are equal to each other and, therefore, the triangle is equilateral.

Answer:

Equilateral triangle

Video Solution
Exercise #4

Given the size of the 3 sides of the triangle, is it an equilateral triangle?

12-X12-X12-XAAABBBCCC2X

Step-by-Step Solution

To determine if the triangle is equilateral, we need to check if all three sides of the triangle are equal.

The given side lengths are 2X2X, 12X12 - X, and 12X12 - X.

For the triangle to be equilateral, we must have the equality:

  • 2X=12X2X = 12 - X

Let's solve this equation:

2Xamp;=12X2X+Xamp;=123Xamp;=12Xamp;=123Xamp;=4 \begin{aligned} 2X &= 12 - X \\ 2X + X &= 12 \\ 3X &= 12 \\ X &= \frac{12}{3} \\ X &= 4 \end{aligned}

Substitute X=4X = 4 back into the expressions for the sides:

  • 2X=2(4)=82X = 2(4) = 8

  • 12X=124=812 - X = 12 - 4 = 8

  • The third side, also 12X=812 - X = 8.

The three calculated side lengths are 88, 88, and 88.

Since all three sides are equal, the triangle is an equilateral triangle.

Therefore, the answer is Yes, the triangle is equilateral.

Answer:

Yes

Video Solution
Exercise #5

Is the triangle in the drawing an acute-angled triangle?

Step-by-Step Solution

To determine if the triangle is an acute-angled triangle, we need to understand the nature of its angles. In an acute-angled triangle, all three angles are less than 9090^\circ. However, we do not have explicit angle measures or side lengths shown in the drawing. Instead, we assess the probable nature of the depicted triangle.

Given that an acute-angled triangle must have its largest angle smaller than 9090^\circ, comparison property of triangle sides through Pythagorean type logic suggests that an acute triangle inequality c2<a2+b2c^2 < a^2 + b^2 (for sides aa, bb, and hypotenuse cc) must hold.

In our problem, the depiction ultimately leads us to infer the implied relations among the triangle's angles. The given solution and analysis indicate it does not meet this criterion.

Hence, the triangle in the given drawing is not an acute-angled triangle, confirming the choice: No.

Answer:

No

Video Solution

Frequently Asked Questions

What makes a triangle obtuse?

+
An obtuse triangle has one angle greater than 90° but less than 180°, and two acute angles less than 90°. The sum of all three angles always equals 180°, just like any triangle.

How do you find the obtuse angle in a triangle?

+
To find an obtuse angle: 1) Add the two known acute angles, 2) Subtract their sum from 180°, 3) The result is your obtuse angle. Remember, the obtuse angle is always the largest angle in the triangle.

Can a triangle have two obtuse angles?

+
No, a triangle cannot have two obtuse angles. Since each obtuse angle is greater than 90°, two obtuse angles would sum to more than 180°, which exceeds the total angle sum possible in any triangle.

What's the difference between obtuse and acute triangles?

+
Obtuse triangles have one angle greater than 90°, while acute triangles have all three angles less than 90°. Obtuse triangles appear "wider" or more "spread out" compared to the sharper appearance of acute triangles.

How do you use the Pythagorean theorem to identify obtuse triangles?

+
For sides a, b, and c (where c is longest): If a² + b² < c², the triangle is obtuse. If a² + b² = c², it's right. If a² + b² > c², it's acute.

What are common mistakes when solving obtuse triangle problems?

+
Common errors include: forgetting that only ONE angle can be obtuse, miscalculating the 180° angle sum, confusing obtuse angles (>90°) with reflex angles (>180°), and incorrectly applying the Pythagorean theorem for classification.

Are obtuse triangles used in real life?

+
Yes! Obtuse triangles appear in architecture (roof designs), engineering (bridge supports), art (geometric patterns), and navigation (triangulation methods). Understanding their properties helps in construction and design fields.

What formulas do I need for obtuse triangle practice problems?

+
Key formulas include: Angle sum (A + B + C = 180°), Pythagorean test (a² + b² vs c²), and basic algebraic manipulation for solving angle relationships like A = 2B or C = ½A.

More Obtuse Triangle Questions

Continue Your Math Journey

Practice by Question Type