Equilateral Triangle Practice Problems - Interactive Exercises

Master equilateral triangle concepts with step-by-step practice problems. Learn to calculate angles, perimeter, area, and identify properties of regular triangles.

📚Practice Equilateral Triangle Problems and Build Your Geometry Skills
  • Calculate angles in equilateral triangles knowing each measures exactly 60 degrees
  • Find perimeter by multiplying side length by 3 using the equal sides property
  • Determine unknown side lengths when given the perimeter of regular triangles
  • Solve complex area problems involving equilateral triangles and semicircles
  • Identify characteristics of regular three-sided polygons and their remarkable points
  • Apply Pythagorean theorem to find heights in equilateral triangle problems

Understanding Equilateral triangle

Complete explanation with examples

Definition of equilateral triangle

The equilateral triangle is a triangle that all its sides have the same length.

This also implies that all its angles are equal, that is, each angle measures 60° 60° degrees (remember that the sum of the angles of a triangle is 180° 180° degrees and, therefore, these 180° 180° degrees are divided equally by the three angles).

Detailed explanation

Practice Equilateral triangle

Test your knowledge with 20 quizzes

What kind of triangle is given in the drawing?

999555999AAABBBCCC

Examples with solutions for Equilateral triangle

Step-by-step solutions included
Exercise #1

Calculate the size of angle X given that the triangle is equilateral.

XXXAAABBBCCC

Step-by-Step Solution

Remember that the sum of angles in a triangle is equal to 180.

In an equilateral triangle, all sides and all angles are equal to each other.

Therefore, we will calculate as follows:

x+x+x=180 x+x+x=180

3x=180 3x=180

We divide both sides by 3:

x=60 x=60

Answer:

60

Video Solution
Exercise #2

What is the size of each angle in an equilateral triangle?

AAACCCBBB

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify that an equilateral triangle has all sides of equal length, which implies its angles are also equal.
  • Step 2: Utilize the property that the sum of angles in any triangle is 180180^\circ.
  • Step 3: Since each angle is equal in an equilateral triangle, divide the total sum of 180180^\circ by 3.

Now, let's work through each step:
Step 1: In an equilateral triangle, all angles are equal in size.
Step 2: The sum of angles in any triangle is always 180180^\circ.
Step 3: Divide 180180^\circ by 3.

Calculating 180÷3=60180^\circ \div 3 = 60^\circ.

Therefore, the size of each angle in an equilateral triangle is 6060^\circ.

Answer:

60

Video Solution
Exercise #3

Which kind of triangle is given in the drawing?

666666666AAABBBCCC

Step-by-Step Solution

As we know that sides AB, BC, and CA are all equal to 6,

All are equal to each other and, therefore, the triangle is equilateral.

Answer:

Equilateral triangle

Video Solution
Exercise #4

Given the size of the 3 sides of the triangle, is it an equilateral triangle?

12-X12-X12-XAAABBBCCC2X

Step-by-Step Solution

To determine if the triangle is equilateral, we need to check if all three sides of the triangle are equal.

The given side lengths are 2X2X, 12X12 - X, and 12X12 - X.

For the triangle to be equilateral, we must have the equality:

  • 2X=12X2X = 12 - X

Let's solve this equation:

2X=12X2X+X=123X=12X=123X=4 \begin{aligned} 2X &= 12 - X \\ 2X + X &= 12 \\ 3X &= 12 \\ X &= \frac{12}{3} \\ X &= 4 \end{aligned}

Substitute X=4X = 4 back into the expressions for the sides:

  • 2X=2(4)=82X = 2(4) = 8

  • 12X=124=812 - X = 12 - 4 = 8

  • The third side, also 12X=812 - X = 8.

The three calculated side lengths are 88, 88, and 88.

Since all three sides are equal, the triangle is an equilateral triangle.

Therefore, the answer is Yes, the triangle is equilateral.

Answer:

Yes

Video Solution
Exercise #5

Is the triangle in the drawing an acute-angled triangle?

Step-by-Step Solution

To determine if the triangle is an acute-angled triangle, we need to understand the nature of its angles. In an acute-angled triangle, all three angles are less than 9090^\circ. However, we do not have explicit angle measures or side lengths shown in the drawing. Instead, we assess the probable nature of the depicted triangle.

Given that an acute-angled triangle must have its largest angle smaller than 9090^\circ, comparison property of triangle sides through Pythagorean type logic suggests that an acute triangle inequality c2<a2+b2c^2 < a^2 + b^2 (for sides aa, bb, and hypotenuse cc) must hold.

In our problem, the depiction ultimately leads us to infer the implied relations among the triangle's angles. The given solution and analysis indicate it does not meet this criterion.

Hence, the triangle in the given drawing is not an acute-angled triangle, confirming the choice: No.

Answer:

No

Video Solution

Frequently Asked Questions

What makes a triangle equilateral and how do I identify one?

+
An equilateral triangle has all three sides of equal length and all three interior angles measuring exactly 60 degrees. It's also called a regular three-sided polygon because both sides and angles are equal.

How do I calculate the perimeter of an equilateral triangle?

+
Since all sides are equal, multiply the length of one side by 3. For example, if one side is 5 cm, the perimeter is 3 × 5 = 15 cm.

What are the angle measures in an equilateral triangle?

+
All three interior angles in an equilateral triangle measure 60 degrees each. Since triangle angles sum to 180°, each angle gets 180° ÷ 3 = 60°.

How do I find a missing side length if I know the perimeter?

+
Divide the total perimeter by 3. For instance, if the perimeter is 33 cm, each side length is 33 ÷ 3 = 11 cm.

What special properties do equilateral triangles have?

+
Key properties include: 1) All remarkable lines (heights, medians, bisectors) coincide, 2) All remarkable points meet at the same center point, 3) It's classified as an acute triangle since all angles are less than 90°.

How do I calculate the area of an equilateral triangle?

+
Use the formula: Area = (side² × √3) ÷ 4. First find the height using the Pythagorean theorem, then apply the standard triangle area formula: (base × height) ÷ 2.

What's the difference between equilateral, isosceles, and scalene triangles?

+
Equilateral triangles have all three sides equal, isosceles triangles have exactly two equal sides, and scalene triangles have no equal sides. This classification is based on side lengths.

Why is an equilateral triangle called a regular polygon?

+
A regular polygon has all sides equal and all angles equal. Since equilateral triangles meet both criteria with three equal sides and three 60° angles, they qualify as regular three-sided polygons.

More Equilateral triangle Questions

Continue Your Math Journey

Practice by Question Type