There is a wide variety of geometric shapes, which you can read about in detail:
Master triangle types, angle calculations, and geometric properties with interactive practice problems. Build confidence in equilateral, isosceles, right, and scalene triangles.
There is a wide variety of geometric shapes, which you can read about in detail:

The trapezoid ABCD is shown below.
AB = 2.5 cm
DC = 4 cm
Height (h) = 6 cm
Calculate the area of the trapezoid.
Angle A is equal to 30°.
Angle B is equal to 60°.
Angle C is equal to 90°.
Can these angles form a triangle?
We must first add the three angles to see if they equal 180 degrees:
The sum of the angles equals 180, therefore they can form a triangle.
Answer:
Yes
Angle A equals 56°.
Angle B equals 89°.
Angle C equals 17°.
Can these angles make a triangle?
We add the three angles to see if they are equal to 180 degrees:
The sum of the given angles is not equal to 180, so they cannot form a triangle.
Answer:
No.
Angle A equals 90°.
Angle B equals 115°.
Angle C equals 35°.
Can these angles form a triangle?
We add the three angles to see if they are equal to 180 degrees:
The sum of the given angles is not equal to 180, so they cannot form a triangle.
Answer:
No.
Look at the rectangle ABCD below.
Side AB is 6 cm long and side BC is 4 cm long.
What is the area of the rectangle?
Remember that the formula for the area of a rectangle is width times height
We are given that the width of the rectangle is 6
and that the length of the rectangle is 4
Therefore we calculate:
6*4=24
Answer:
24 cm²
Given the rhombus in the drawing:
What is the area?
Let's remember that there are two ways to calculate the area of a rhombus:
The first is the side times the height of the side.
The second is diagonal times diagonal divided by 2.
Since we are given both diagonals, we calculate it the second way:
Answer:
14